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Abstract 

For more than 50 years, most rare earth elements were extracted from carbonatite deposits, which can contain different 

rare earth phases, but the main extracted minerals are bastnaesite, monazite and xenotime. Many studies focused on the 

improvement and development of dressing circuits for ores of these minerals. However, in some carbonatite complexes, 

rare earth deposits are composed partly or mainly of ancylite ores. This type of rare earth ores was very poorly studied 

in terms of dressability – previous experiments with ancylite ores are rare and not productive enough. Ancylite is the 

main concentrator of rare earth elements in most carbonatite complexes of the Devonian Kola Alkaline Province (north-

west Russia). Dressability of ancylite ore from the Petyayan-Vara carbonatite field in the Vuorijärvi alkaline-ultramafic 

complex was assessed using the flotation method. The complex is one of the most potential rare earth deposits 

associated with carbonatites in the Kola Region. Petrographic and mineralogical studies demonstrated the occurrence 

of abundant iron and barite oxide inclusions in ancylite, which imposes restrictions on physical separation of these 

three minerals. The study of petrogeochemical and mineralogical composition of fractions formed during mechanical 

grinding of ores to a size less than 2.0 mm showed that even at this stage of sample preparation, the finest-grained 

fractions (less than 0.071 mm) were enriched in ancylite (to 19 vol.% or more with a content of 15 vol.% in ore). Three 

classes of reagents were considered as collectors in flotation experiments: fatty acids, alkyl hydroxamic acids, and 

amino acid derivatives. The reagent from the amino acid derivative class was highly efficient. The use of such a col-

lector in combination with sodium hexametaphosphate depressant made it possible to obtain a flotation concentrate in 

an open circuit with total rare earth oxides content 33.4 wt.% at 64.7 % extraction. 
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Introduction 

Rare earth elements (REE) are widely used in modern technologies (including “green” ones) [1, 2]. 

Approximately 51.4 % of the world REE resources are concentrated in carbonatite deposits, and bast-

naesite-(Ce) (Ce,La)CO3F, monazite-(Ce) (Ce,La)PO4 and xenotime-(Y) YPO4 are the most signifi-

cant REE minerals and are of the greatest commercial interest [3, 4]. Ores of carbonatite deposits are 

difficult to beneficiate, since in most cases both rare earth minerals and the rock component are 
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represented by carbonates. The similarity of their physical properties requires a consistent use of 

different dressing methods. For this reason, the technologies applied and proposed for the extraction 

of rare earth metal concentrates are generally multi-stage and combine gravity, magnetic and flotation 

dressing methods [5]. A high density of REE minerals determines the advisability of gravity separa-

tion [6, 7] as pre-concentration [5, 8] and in finishing operations [9, 10]. Magnetic separation is rele-

vant when there is a difference in magnetic properties of the separated minerals [11,12]. The same 

applies to minerals with low magnetic susceptibility [13, 14]. Magnetic separation in a weak field is 

used to separate iron-containing minerals also after reducing roasting. However, the most demanded 

method of REE ore dressing is flotation [15]. Most studies aimed at development and improvement 

of the flotation process focus on the surface characteristics of the most common rare earth minerals – 

bastnaesite and monazite, on their interaction with flotation reagents [16, 17]. Since minerals con-

taining REE oxides and gangue minerals often have similar physicochemical properties, the correct 

selection of the reagent mode and preliminary preparation are of great importance for their flotation 

separation [18, 19]. Oxyhydryl collectors are used for dressing of REE ores [20] including traditional 

fatty acids [21, 22], with participation of activators [23] and depressants [24]. Most demanded for 

REE ore flotation are the compounds with a hydroxamate group [25, 26]. On the surface of minerals, 

these reagents form mono- or bidentate complexes [27]. The presence of two hydroxamate groups in 

the reagent based on alkyl malonic acids ensures a high selectivity with respect to bastnaesite [28]. 

Both aliphatic [29] and aromatic reagents are considered as collectors: benzene hydroxamic [30], 

naphthyl hydroxamic [31], salicylic hydroxamic [32] acids. The problem largely lies in the fact that 

the rocks that are REE ores in certain carbonatite deposits have a specific mineral composition. This 

requires the selection of specific reagents and their combinations that are most efficient in dressing 

of ores from each deposit.  

It should be noted that in recent years bastnaesite took the leading position as a source of REE, 

which is primarily due to the development of large deposits in China (for example, Bayan-Obo) and 

the USA (Mountain Pass) [33]. Therefore, most of the research focuses on the improvement and 

development of dressing circuits for bastnaesite ores. However, there are geological complexes in the 

world with ores associated with alternative rare earth carbonates. An example of non-bastnaesite mine-

ralization in carbonatites are ores of the second largest US deposit Bear Lodge [34], where a signifi-

cant volume of REE is contained in ancylite-(Ce) CeSr(CO3)2(OH)H2O. Unfortunately, there are only 

a few works devoted to dressing of such ores [34]. As studies of the Bear Lodge ancylite ores showed, 

a direct transfer of dressing experience accumulated for bastnaesite ores to ancylite ores is not suc-

cessful. The use of physical dressing methods alone (gravity and magnetic separation) makes it pos-

sible to obtain a concentrate containing 6.64 wt.% REE at an extraction rate 86.4 % from the Bear 

Lodge deposit ore (4.5 wt.% REE). Studies of the surface properties of ancylite, strontianite and cal-

cite under the action of octane hydroxamic acid showed that the properties of these minerals are 

similar [34], which makes it necessary to investigate other classes of reagents for the flotation extrac-

tion of ancylite. A technology [35, 36] including high-intensity magnetic separation followed by flo-

tation of the non-magnetic fraction was proposed for the ore of this deposit. According to the proposed 

technology, a concentrate containing 11.2 % REE at extraction rate 61.2 % is expected to be obtained 

from ore containing 4.5 wt.% REE. In this paper, the object of the study is one of the varieties of rare 

earth ores of the Petyayan-Vara carbonatite field in the Vuorijärvi alkaline-ultramafic complex (Kola 

Region, northwest Russia) in which the main concentrator of REE is also ancylite. REE resources in 

these carbonatites were not calculated, but this object is potentially one of the most promising REE 

deposits in the Kola Region associated with carbonatites [37]. In the process of developing new 

deposits, the analysis of geometallurgical parameters and potential methods of mineral extraction 

is of crucial importance [38]. The objective of this work is to assess the dressability of Petyayan-
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Vara ancylite ore by the flotation method. The results obtained can be used in the development of 

both rare earth deposits in the Kola Alkaline Province in particular, and ancylite ores of carbonatite 

deposits in general.  

Geology of the study object 

The Vuorijärvi massif, along with more than twenty other complexes, is part of the Paleozoic 

Kola Alkaline Province formed 380-360 million years ago. In a number of complexes in this Province 

(the Khibiny, Sebljavr, Sallanlatva, Sokli, Vuorijärvi massifs), the occurrence of REE mineralization 

was recorded [39] including that of economic interest. For example, according to the available 

data [40], barite-rich ankerite and siderite carbonatites of Sallanlatva (the so-called barite ores) traced 

to a depth of 500 m (C2+P1 reserves) contain about 1 million tons of REE oxides. It should be noted 

that the specific feature of all carbonatite complexes in the Kola Province, in which the presence of 

REE mineralization was ascertained, is a wide occurrence of ancylite with subordinate other REE 

minerals, such as bastnaesite, burbankite, monazite, etc. [39], which brings them closer to the Bear 

Lodge deposit [41, 42]. However, the resources of most alkaline-ultramafic complexes in the Province 

were not assessed due to insufficient study of REE rocks occurring there. One of such complexes is 

Vuorijärvi, in which a large-scale occurrence of REE carbonatites was established in the Petyayan-

Vara area [43]. Rare earth elements-carbonatites of Petyayan-Vara were discovered in the 1950s 

during exploration for phlogopite [43], but until recently, no specialized work on their study was carried 

out. This article is part of a comprehensive study aimed at filling this gap. Among the carbonatites of 

the Petyayan-Vara field, two types of REE-rich rocks were described [43] – ancylite-dolomite and 

bastnaesite-dolomite carbonatites (ancylite and bastnaesite ores) with the former markedly predomi-

nating. Both ore varieties are for the most part breccias composed of fragments of early magmatic 

dolomite carbonatites and cement with a high REE content. In ancylite ores (Fig.1, a) the cement 

consists of ancylite-(Ce), barite, first-generation strontianite, and calcite (±quartz) (Fig.1, b); in bast-

naesite ores, the predominant matrix minerals are bastnaesite-(Ce) and quartz. Total content of rare 

earth oxides (ΣTR2O3) in ancylite ores averages 10 wt.% or more, whereas bastnaesite ores contain 

5 wt.% or less ΣTR2O3. The available data allow stating that lower REE contents in bastnaesite ores 

and a lower prevalence of such rocks are due to their nature – bastnaesite ores formed as a result of 

late local metasomatic action on ancylite ores which caused dissolution of the latter, remobilization 

and deposition of REE in bastnaesite (with accompanying dilution) as well as the release of Sr and 

its precipitation at a distance in second-generation strontianite [44, 45]. Detailed information on 

various aspects of geology of the Vuorijärvi carbonatites is presented in [40, 46]. 

Methods 

For flotation experiments at the Petyayan-Vara area, about 1 t of ancylite ore was taken, which 

was pre-crushed before the experiment in laboratory jaw and roller crushers manufactured by JSC 

REC “Mekhanobr-tekhnika” to a size –2 mm. Samples were divided by the size grades into 10 frac-

tions (Table 1) for each of which the chemical composition was determined, and artificial thin sec-

tions were made for mineralogical analysis. The content of total REE oxides was determined gravi-

metrically, the content of magnesium, calcium, barium and iron – by atomic absorption spectroscopy 

(atomic absorption spectrometer “Quantum 2MT”), silicon – by colorimetry (spectrophotometer 

UNICO 1201). Analytical errors were 1.5 % for concentrations >10 wt.% and 3.5 % for concentra-

tions from 1 to 10 wt.%. The contents of individual REE were determined by the ICP-MS method 

(inductively coupled plasma mass spectrometer ELAN 9000 (PerkinElmer). Studies of phase and 

intraphase heterogeneity of individuals and the study of chemical composition of minerals were ac-

complished by optical methods on an Axioplan polarizing microscope (with concomitant registration 

of mineral bodies using a video camera) and by electron microscopy methods on a LEO-1450  
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scanning electron microscope with a Quantax energy-dispersive attachment. Quantitative analysis of 

the content of minerals in fractions was performed by calculation (based on chemical compositions 

of fractions and the determined composition of minerals) with verification of the obtained results 

using the ISA1 software application. This software is designed to calculate from backscattered elec-

tron (BSE) images the percentage of pixels of various shades of grey corresponding to certain minerals 

at fixed brightness and contrast parameters. An example of operation of such application is shown in 

Fig.1, c, d. 

A 400 g ore subsample was crushed to flotation size in a laboratory ball mill. The content of  

–0.071 mm grade in ground ore was 49.8 %. Before flotation, a desliming operation was performed, 

the yield of sludge was 6.2-6.5 %. Flotation was carried out in a 237FL-A laboratory mechanical 

flotation machine (manufactured by JSC REC “Mekhanobr-tekhnika”), the chamber volume in rougher 

flotation was 1 l, in recleaning operations 0.5 l. Air consumption was 1 l/min per 1 l of pulp volume. 

Flotation was carried out on tap water in an open circuit including rougher flotation and three recleaning 

operations of the froth product. The required pH value of 9.8-9.9 was created by adding Na2CO3. The 

time of rougher flotation and recleaning operations is 3 min, flotation temperature 18-20 °C. Dressing 

results were calculated on the basis of data on chemical analysis of dressing products. 

                                                      
1 Chernyavsky A.V. Certificate of state registration of software N 2023613774 RF. ISA software for assessing the quantitative 

content of minerals and the opening degree of their intergrowths. Publ. 20.02.2023. Bull. N 2. 
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 Fig.1. Ancylite ores of the Petyayan-Vara area, Vuorijärvi carbonatite massif: a – general view of rocks;  

b – backscattered electron (BSE) image of the contact between brecciated dolomite carbonatite and cement bearing REE mineralization; 

c, d – an example of processing a BSE image of an artificial thin section (for illustration, a fraction from –0.315 to +0.2 mm  

was taken) by ISA software visualizing the ratios of minerals in ore 

Anc – ancylite; Brt – barite; Cal – calcite; Dol – dolomite; Fe-Ox – iron oxides; Qz – quartz; Str – strontianite. 

Epoxy resin is shown in purple  
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Table 1 

Content of the main components in an ancylite ore sample  

Size grade, mm Yield,  % 
Content, wt.% 

CaO MgO Fetot SiO2 BaO ΣTR2O3 

+6 5.01 26.74 8.98 2.01 4.74 3.55 10.83 

From –1.6 to +1.0 9.50 27.27 11.84 2.35 1.23 3.26 10.45 

From –1.0 to +0.63 9.01 27.80 13.69 2.48 2.11 2.09 6.84 

From –0.63 to +0.4 9.01 27.73 14.16 2.46 2.19 2.12 6.15 

From –0.4 to +0.315 4.10 27.51 14.42 2.43 1.53 2.00 6.93 

From –0.315 to +0.2 6.80 26.76 14.29 2.57 1.49 1.91 6.20 

From –0.2 to +0.16 3.01 26.06 12.46 2.61 1.88 2.21 7.81 

From –0.16 to +0.071 3.03 26.14 10.92 2.62 1.67 2.86 11.45 

From –0.071 to +0.05 44.91 24.70 10.92 2.67 1.87 3.98 14.42 

From –0.05 5.62 23.36 7.73 3.95 2.82 6.96 18.33 

Total 100.00 25.86 11.69 2.62 2.01 3.41 11.50 

 
Experiments on non-froth flotation in a Halimond tube were performed on samples of ancylite 

and rock minerals separated from the ore fraction with a size from –0.16 to +0.1 mm. Separation  

was carried out in heavy liquid with a density 3.65 g/cm3. REE content in the fraction with density 

ρ > 3.65 g/cm3 was βTR2O3 = 45.8 %, the fraction of carbonate rock minerals (mainly calcite and 

dolomite) was characterized by a content of βCaO = 29.35 %; βMgO = 14.44 %. The required pH 

value of 9.6-9.8 was created by adding NaOH. A 0.5 g mineral subsample was agitated for 1 min with 

NaOH solution, 2 min with a collector solution, and then floated in a 100 ml chamber for 3 min. Air 

feed rate was 5.3 ml/min, flotation temperature 20 °C. Strength of reagent fixation on ancylite and 

rock minerals was assessed by flotation in a Halimond tube under desorption conditions. After agita-

tion of the mineral with reagent, 50 % of the liquid phase was replaced with distilled water with pH 

9.6-9.8, stirred for another 2 min, and then floated. The efficiency of reagents was assessed by the 

yields of separation products; in case of the rock mineral fraction, the resulting products were ana-

lysed for CaO and MgO content. 

Discussion of results 

According to the accomplished study, the main petrogeochemical components of the studied 

ancylite ores are (in descending order) CaO, MgO and ΣTR2O3, and the contents of the last two com-

ponents are very close (Table 1). The fractions identified by size are similar in chemical composition, 

but there are a number of trends: CaO content is consistent and decreases slightly only in the finest-

grained fractions; MgO content is at maximum in medium-grained fractions (from –0.63 to +0.2) and 

decreases both in the direction of coarsening and decreasing grain size; ΣTR2O3 content, on the con-

trary, is minimal in medium-grained fractions (6-7 wt.%), increases twofold (to 11 wt.%) in the  

direction of coarser-grained fractions and threefold (to 18 wt.%) in the direction of fine-grained frac-

tions. It should be noted that, according to ICP-MS analysis, in the studied ore the REE are repre-

sented mainly (99.5 %) by lanthanides of the cerium group (from Ce to Eu), with (La + Ce) share 

accounting for 86.3 %. 

Quantitative mineralogical analysis (Table 2) showed that the ore under study is a mixture of 

carbonate minerals, the separation of which by flotation is a very interesting and complicated task 

due to similarity of their surface properties. The main mineral of ancylite ores is dolomite, the content 

of which, like that of MgO, is determined in medium-grained fractions (to 83 vol.%). The content of 

ancylite (the second most common mineral of the studied ores) changes according to the same pattern 

as the content of ΣTR2O3 reaching its maximum in the finest-grained fractions (to 24 vol.%) with a 

minimum (8-9 vol.%) in medium-grained fractions. The content of barite changes in a way similar to 
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ancylite. This is due to the fact that in ancylite ores of Petyayan-Vara a significant part of barite, like 

strontianite, occurs as inclusions in ancylite and close intergrowths with it (see Fig.1, d), which makes 

these minerals physically difficult to separate. At the geochemical level (see Table 1), this relation-

ship shows up as a strong linear dependence between the contents of ΣTR2O3 (the main concentrator 

of REE – ancylite) and BaO (concentrator – barite) with a Pearson correlation coefficient 0.95. The 

third most common mineral in ancylite ores is calcite, the content of which turned out to be maximum 

in the coarsest-grained fraction (to 21 vol.%), sharply decreased (to 3-5 vol.%) in medium-grained 

fractions and again increased (to 18 vol.%) in the finest-grained fractions. 

 
Table 2 

Quantitative mineral composition of ancylite ore  

Size grade, mm 
Mineral, vol.% 

Dol Cal Anc Str Brt Fe-Ox Qz 

+1.6 52.27 20.60 14.46 3.81 3.36 0.55 4.95 

From –1.6 to +1.0 65.98 11.58 13.36 4.38 2.95 0.52 1.23 

From –1.0 to  +0.63 77.99 6.81 8.94 1.70 1.94 0.48 2.15 

From –0.63 to +0.4 78.62 5.02 7.83 4.00 1.92 0.43 2.18 

From –0.4 to +0.315 80.63 3.83 8.89 2.90 1.82 0.40 1.54 

From –0.315 to +0.2 82.82 2.98 8.24 2.11 1.80 0.51 1.54 

From –0.2 to +0.16 73.33 7.85 10.55 3.51 2.12 0.66 1.98 

From –0.16 to +0.071 64.73 13.26 15.57 1.13 2.76 0.79 1.77 

From –0.071 to +0.05 62.80 10.19 19.03 1.56 3.73 0.79 1.92 

–0.05 44.98 18.38 24.46 0.88 6.59 1.77 2.94 

Total 66.84 9.81 15.13 2.27 3.18 0.71 2.06 

 
In the present work, reagents of three classes of compounds are considered as collectors for 

flotation of ancylite. Fatty acids, including oleic acid, are traditional collectors for flotation of car-

bonate minerals and, as a rule, are considered as a reference compound for a comparative evaluation 

of the action of new reagents.  

Hydroxamic acids are widely used in flotation of REE ores. The presence in the molecule of this 

collector of a hydroxamate group capable of forming complex compounds with transition metals, de-

termines the selectivity of their action at flotation of bastnaesite and monazite ores [27, 34].  

Using Raman spectroscopy, the preferential adsorption of octane hydroxamic acid on synthetic ce-

rium carbonate was shown in comparison with calcite [47]. 

The effect of three classes of collectors on ancylite ore minerals was studied using the non-froth 

flotation method: fatty acids using oleic acid as an example; alkyl hydroxamic acids on the example 

of pelargonic hydroxamic acid C8H17CONHOH (the reagent was synthesized at the Laboratory of 

the Mining Institute of KSC RAS, acid number is 321 mg/g of substance, melting point 82 C) and 

amino acid derivatives exemplified by Berol 2015 reagent (Nouryon). All the reagents were used as 

sodium salts pre-saponified with a calculated amount of NaOH. 

Figure 2 shows the concentration dependences of floatability of collectors from three classes 

of compounds with respect to ancylite and rock minerals. From the data in Fig.2, a higher hydro-

phobizing effect with respect to all minerals is obvious for oleic acid and Berol 2015 reagent, which 

can be expected due to a greater length of the hydrocarbon radical. In case of pelargonic hydroxamic 

acid, an order of magnitude higher reagent concentrations are required to achieve the same effect, 

which is associated with a much shorter length of the hydrocarbon radical. It should be noted that 

the difference in the action of reagents with respect to ancylite and rock minerals is more pro-

nounced for pelargonic hydroxamic acid. This indicates a higher selectivity of the action of such a 

collector. 
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Flotation under desorption conditions showed (Fig.3) that, in terms of their efficiency with  

respect to ancylite, the reagents are arranged in the following order: oleic acid > Berol 2015 >  

> C8H17CONHOH. This sequence of reagents is determined to a greater extent by the length of the 

hydrocarbon radical in these collectors. The larger the hydrophobic radical, the lower concentration 

of reagent is sufficient to ensure hydrophobization of the mineral surface. In case of pelargonic  

hydroxamic acid, the hydrocarbon part of the molecule is quite small, and the remaining concentration 

of reagent on the surface after “washing” is insufficient for the required hydrophobization of the 

mineral. With increasing concentration of collector, the specificity of interaction of the functional 

group that ensures fixation of reagent on the mineral surface becomes more important. As for rock 

carbonate minerals, a high degree of reagent “washing” under desorption conditions is demonstrated 

for Berol 2015 reagent. Hydrophobic effect of oleic acid in relation to calcite and dolomite also shows 

up under desorption conditions, which indicates a low efficiency of recleaning operations when using 

this collector in flotation. 

Evaluation of the properties of reagents demonstrated in non-froth flotation of minerals suggests 

that the highest efficiency in flotation of ancylite ore should be expected for pelargonic hydroxamic 

acid due to its high selectivity with respect to ancylite and Berol 2015 reagent, the specificity of the 

action of which is combined with a low strength of fixation on rock minerals. The dependencies 

obtained in flotation of ancylite ore at pH = 9.6-9.8 differ slightly from those obtained in non-froth 

flotation of pure minerals (Fig.4). To obtain similar quality indicators of the concentrate and the extrac-

tion of REE into it when using pelargonic hydroxamic acid, approximately 2-2.5 times less reagent is 

required than with Berol 2015. However, a “cleaner” product with a lower content of rock minerals 

is obtained when using Berol 2015. 

It is known that the use of depressants allows increasing the flotation efficiency. In some cases, 

depressant reagents at certain flow rates play the role of a peptizer of sludge particles which can affect 

the flotation of such easily crushable mineral as ancylite. Two well-known depressant reagents were 

tested at different flow rates on the ore under study: liquid glass (LGl) and sodium hexametaphosphate 

(HMPh) [48]. Flotation was carried out in an open circuit, on fresh water, with rougher flotation 

and three recleanings of the froth product. The best of the results obtained are given in Table 3. 

Oleic acid 

Berol 2015 Dolomite 

Calcite 

Ancylite 

C8H17CONHOH 

0.000001 0.00001 0.0001 0.001 

Concentrate of reagent, mol/l  

100 

 

80 

 

60 

 

40 

 

20 

 

0 

Y
ie

ld
, 

%
 

 Fig.2. Results of flotation experiment in Halimond tube for ancylite (red), calcite (blue) and dolomite (green)  

with reagents: oleic acid (solid lines), Berol 2015 (dashed lines) and С8H17CONHOH (dotted lines) 
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and dolomite (green) under normal conditions (solid lines) and under desorption conditions (dash-dotted lines) 
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Table 3 

Open circuit flotation of ancylite ore with different depressants 

Reagent mode, g/t 

Concentrate Content in tailings, 

wt.% Content, wt.% Extraction, % 

ΣTR2O3 CaO MgO ΣTR2O3 CaO MgO ΣTR2O3 

350 g/t С8H17CONHOH + 150 g/t LGl 18.8 18.49 7.32 55.2 15.2 12.7 3.47 

350 g/t С8H17CONHOH + 100 g/t HMPh 20.5 20.83 7.84 47.5 13.7 11.8 4.50 

800 g/t Berol 2015 + 100 g/t LGl 32.0 13.62 3.62 60.8 8.0 4.8 2.00 

1,000 g/t Berol 2015 + 120 g/t HMPh 33.4 13.45 3.8 64.7 7.7 5.2 2.10 

 
The advantage of Berol 2015 reagent which belongs to the class of amino acid derivatives over 

hydroxamic acids is also retained when using depressants. At a higher quality of the concentrate in 

this case (33.4 % ΣTR2O3), a more complete REE extraction into the concentrate is achieved (64.7 % 

in the open circuit from the flotation feed). The obtained results have a clear advantage over the 

previously obtained dressing indicators of similar ancylite ore with carbonate rock minerals. As is 

known from literary sources, it is expected to obtain a concentrate with 11.2 % ΣTR2O3 content at 

61.2 % extraction from the ore of the Bear Lodge deposit (4.5 % ΣTR2O3) as a result of combination 
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reagents for ΣTR2O3 (red), CaO (blue) and MgO (green): a – content in concentrate; b – extraction to concentrate 
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of high-intensity magnetic separation and the flotation method [35]. The concentration degree of the 

valuable component (REE) in this case is only 2.5-fold. In our case, using only the flotation method, 

a concentrate was obtained with 4.5-fold REE concentration degree. 

The possibility of efficient separation of rare-earth carbonates from calcite and dolomite by flo-

tation will undoubtedly be in demand in the combined dressing circuit. A high density of rare-earth 

carbonates determines the advisability of gravity dressing at the first stage. However, given the ten-

dency of ancylite to overcrushing, flotation will be required to extract the valuable component from 

the sludge products of gravity. 

Conclusion 

Dressability of ancylite ore from the Petyayan-Vara area in the Vuorijärvi alkaline-ultramafic 

complex was studied. An evaluation of dressability of ancylite ore by the flotation method was ac-

complished. It was shown that reagents with nitrogen-containing groups in their structure – alkyl 

hydroxamic acid and amino acid derivatives – are characterized by a higher selectivity of action in 

relation to REE carbonates. The reagent from the class of amino acid derivatives (Berol 2015)  

is characterized by a less strong fixation on rock minerals, which ensures more efficient recleaner 

operations. When using the best reagent mode including Berol 2015 reagent (amino acid derivatives) 

in combination with the hexametaphosphate depressant, a flotation concentrate was obtained in an 

open circuit with ΣTR2O3 content 33.4 wt.% at 64.7 % extraction from flotation feed. 
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