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Аннотация. Во Вьетнаме, 3/4 территории которого занимают горные регионы, оползни являются одним из 

наиболее распространенных стихийных бедствий, приводящих к значительному материальному ущербу. Более 

500 коммун в 17 горных провинциях на севере страны подвержены высокой и очень высокой опасности в ре-

зультате развития оползней. Основной целью исследования было составление карт оползневой опасности  

и сравнительный анализ эффективности применяемых методов для района города Тиньтук, расположенного  

в провинции Каобанг. Оценка оползневой опасности выполнена с использованием метода соотношения частот 

(FR) и комбинированного фрактально-частотного метода (FFR). В основе метода FR заложен принцип актуа-

лизма, который предполагает, что факторы, приводящие к разрушениям склонов в прошлом и настоящем, мо-

гут вызвать оползни в будущем. Метод FFR базируется на определении фрактальной размерности, которая 

является мерой плотности заполнения оползнями участка исследований. В качестве исходных данных выбраны 

восемь факторов – высота над уровнем моря, расстояние до дорог, крутизна склонов, геологическое строение, 

расстояние от разломов, землепользование, экспозиция склона и расстояние до эрозионной сети, представлен-

ных в картографическом виде. Достоверность полученных карт оценивалась по площади под кривой ошибок 

(ROC-AUC), а оценка эффективности модели – с использованием индекса подтверждения (LRclass). Для ис-

следуемой области было выделено пять зон: с очень низкой, низкой, средней, высокой и очень высокой 

оползневой опасностью. Анализ достоверности полученных карт с использованием индексов AUC и LRclass 

показал, что модель FFR обладает более высокой степенью достоверности и эффективности (AUC = 86 %, 

LRclass = 86 %) в сравнении с моделью FR (AUC = 72 %, LRclass = 73 %) и ее использование является более 

предпочтительным.  
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Введение. Расположенный на восточной окраине материковой части Юго-Восточной Азии 

Вьетнам считается одной из наиболее динамично развивающихся стран в мире. Из-за тропиче-

ского муссонного климата количество выпадающих во Вьетнаме осадков чрезвычайно велико  

и составляет от 3500 до 4500 мм в год. Такие условия способствуют развитию многочисленных 

оползней. Согласно данным Управления по борьбе со стихийными бедствиями (Ханой, октябрь 

2019 г.), в период с 1953 по 2006 г. во Вьетнаме произошло 448 (в среднем по семь событий в год), 

а в период с 2000 по 2015 г. – 250 ливневых паводков и оползней (в среднем 15-16 событий в год), 
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т.е. наблюдается увеличение интенсивности развития оползневого процесса. Эти события стали 

причиной значительного социально-экономического ущерба [1-3]. Для содействия устойчивому 

развитию горных районов правительство Вьетнама разрабатывает стратегию предотвращения сти-

хийных бедствий и смягчения их последствий, одной из основных целей которой является состав-

ление карт оползневой восприимчивости и опасности. Выполнено большое количество исследо-

ваний, направленных на изучение развития оползневых процессов. Например, по результатам изу-

чения 10266 оползневых участков в горных провинциях на севере Вьетнама, проведенного с 2012 

по 2017 г., было выделено более 500 коммун в 17 горных провинциях, для которых характерна 

высокая и очень высокая оползневая опасность. 

Каобанг – одна из северных провинций Вьетнама площадью 6690 км2 (рис.1). Горный рельеф, 

сложные инженерно-геологические условия и тропический муссонный климат с высоким сред-

негодовым количеством осадков способствуют широкому развитию оползневого процесса,  

а расположенный в южной части провинции район Нгуенбинь считается одним из регионов  

с очень высокой оползневой опасностью [4]. Область исследований охватывает площадь 

66,76 км2, включая г. Тиньтук, который находится в 18 км от центра района Нгуенбинь, и его 

окрестности. Отметки рельефа колеблются от 434 м в долине до 1932 м (пик Фиа Оак) в горной 

местности над уровнем моря [5].  

Для достижения основной цели – построения карты оползневой опасности г. Тиньтук провин-

ции Каобанг (Вьетнам) были использованы два метода: статистический метод соотношения частот 

(Frequency ratio – FR) и комбинированный фрактально-частотный метод (Fractal-frequency ratio – 

FFR). В результате построены карты оползневой опасности исследуемой территории. Дополни-

тельно подтверждена более высокая эффективность комбинированного FFR в сравнении с обыч-

ным методом FR. 
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Рис.1. Расположение района исследования 
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Методы. Разработка карт оползневой восприимчивости территорий зависит от сложной взаи-

мосвязи между проявлениями оползней и факторами оползнеобразования, которые должны быть 

учтены при выполнении анализа. Главной задачей при их построении является прогноз про-

странственного распределения оползней. Результаты оценки оползневой восприимчивости яв-

ляются основой для типизации территории по оползневой опасности. Такая оценка требует ком-

плексного анализа значительных массивов данных, поэтому все большее применение находят 

методики, основанные на использовании геоинформационных систем (ГИС) [2, 6, 7]. Развитие 

методов геоинформационного анализа и математической статистики сделали моделирование 

оползневой восприимчивости доступным, удобным и возможным как при научном анализе, так 

и экономической оценке прогнозного освоения территорий [8]. Благодаря своей простоте и эф-

фективности, статистические методы занимают особое место среди этих работ [9, 10]. Их основ-

ное преимущество заключается в том, что оценка значимости для различных классов факторов 

может быть получена статистически из данных об оползнях, произошедших на исследуемой тер-

ритории в прошлом. В последние годы с целью повышения достоверности статистические ме-

тоды были модифицированы [11, 12] или было проведено их комбинирование с другими мето-

дами [13, 14]. 

Метод соотношения частот. Благодаря простоте использования и высокому уровню досто-

верности получаемых результатов метод FR, основанный на анализе соотношения частот событий, 

является мощным инструментом для оценки оползневой восприимчивости [15]. В его основе за-

ложен принцип актуализма, и он предполагает, что факторы, которые приводили к разрушениям 

склонов в прошлом и настоящем, могут вызвать оползни в будущем. Таким образом, знание ис-

торических оползневых событий играет важную роль в прогнозировании оползневой опасности. 

Количественно связь между участками оползней и факторами, способствующими их развитию, 

можно определить на основе метода соотношения частот [16]. После разделения факторов оползне-

образования на классы значение частоты определяется с использованием уравнения [3] 
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где PLS – процент оползней в пределах каждого класса факторов; PC – процент площади каждого 

класса факторов; Li – количество оползней в классе факторов i; ΣLi – общее количество оползней 

в районе исследования; Ai – площадь класса фактора i; ΣAi – площадь района исследования. 
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где FRi – значение FR класса фактора i. 

Индекс оползневой восприимчивости при данном подходе рассчитывается так: 

LSI = 
1

NFR
n

i

i

 .                                                                (3) 

Фрактально-частотный метод. В геологическую практику активно внедряются подходы, 

основанные на теории фракталов [17, 18]. Опубликовано большое количество работ, посвященных 

применению фрактального анализа при решении геологических задач. В значительной степени в них 

просто фиксируются свойства самоподобия для разных объектов и процессов. В то же время на 

основании результатов такого анализа можно делать важные заключения о типе рассматриваемых 

систем с точки зрения регулярности и прогнозируемости их динамики [19]. Общепринятого 

строгого определения фрактала нет. В исследовании [20] Бенуа Мандельброт определил фрактал 

как «множество, размерность Хаусдорфа – Безиковича (фрактальная размерность) для которого 
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строго больше его топологической размерности». Он же выделил три основных качества фракталов: 

самоподобная форма (масштабная инвариантность), наличие элементов случайности и необычная 

размерность. 

В последние годы подходы, основанные на теории фракталов, широко использовались для 

пространственного анализа, включая планирование и развитие городов [21], изменение длины бе-

реговой линии [22], анализа эволюции растительного покрова [23], а также при оценке оползневой 

опасности территорий [24, 25]. Наибольшую эффективность показали гибридные методы, такие 

как метод фрактально-информационной связи [26] и фрактально-частотный метод [27].  

В основе фрактального подхода лежит степенной закон 

  D

C
p r

r
 ,                                                                    (4) 

где r – характеристика измеряемой шкалы (масштаб рассмотрения); p – значение, определенное по 

соответствующей шкале r; С – постоянный коэффициент; D – фрактальная размерность [28].  

Фрактальная размерность является мерой плотности заполнения пространства, а в случае 

оценки восприимчивости территории к оползневому процессу – мерой плотности заполнения 

оползнями участка исследований. Таким образом, количественно связь между участками оползней 

и факторами, способствующими их развитию, можно определить на основе расчета фрактальной 

размерности – чем она больше, тем выше вес фактора в развитии оползневого процесса [29]. 

Для оценки веса факторов был использован фрактальный метод переменной размерности 

(Variable dimension fractal method – VDFM) [28, 30]. Алгоритм использования метода VDFM вклю-

чает следующие шаги [28]:  

• вычисление относительной плотности оползней (PL); 

• ранжирование классов в порядке убывания значения P в соответствии с r; 

• построение фрактальной модели для определения значения размерности D путем линейной 

подгонки данных, нанесенных на двойные логарифмические координаты S, r. Набор этих значений 

может быть получен из исходных значений P, r, PLi – относительная плотность оползней в каждом 

классе факторов; S – кумулятивная сумма значений PLi; SLi – кумулятивная сумма значений класса 

фактора i; 
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В качестве критерия для приостановки преобразования кумулятивной суммы использовался 

коэффициент корреляции линейной подгонки, удовлетворяющий условию R2 > 0,999. 

В результате вес каждого фактора может быть рассчитан так: 
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Для расчета индекса оползневой восприимчивости в методе FFR используется нормированная 

частота, которая определяется на основе метода FR, согласно уравнению (2). 

Итоговый индекс оползневой восприимчивости рассчитывается по формуле 

1
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где NFRi – значение NFR класса фактора i. 
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Карта инвентаризации оползней. Эффективная модель оползневой опасности должна обес-

печивать максимальное соответствие между наблюдаемыми и прогнозируемыми оползнями. 

Чтобы оценить качество модели, нужно сопоставить прогнозную карту оползневой опасности  

с существующей картой инвентаризации оползней, поэтому подготовка этих карт имеет важное 

значение [31]. 

Карта инвентаризации оползней (Landslide inventory map – LIM) – это карта, на которой пока-

зано распределение существующих проявлений оползневых процессов. Она содержит как инфор-

мацию о количестве, размере и местоположении оползней, так и качественную, описательную  

информацию о связанных с ними опасностях и морфологических характеристиках [32]. При по-

строении карт инвентаризации оползней используются различные подходы, которые можно раз-

делить на три группы [3, 33]: 

• методы, основанные на визуальной интерпретации;  

• полуавтоматические методы;  

• автоматические методы, построенные на использовании обучающей выборки.  

Карта инвентаризации оползней была составлена на основе дешифрирования данных аэрофо-

тосъемки и результатов полевых исследований. Выявлено в общей сложности 47 оползневых 

участков, при этом наименьший объем оползня составил 60 м3, а максимальный – 50000 м3. Боль-

шинство оползней зафиксировано вдоль дорог в низкогорных районах. Карта инвентаризации 

оползней приведена на рис.1. 

Факторы оползнеобразования. Разработка карты оползневой опасности зависит от сложной 

взаимосвязи между проявлениями оползней и факторами оползнеобразования. Строгих рекомен-

даций по их выбору не существует. Для различных территорий набор таких факторов может су-

щественно отличаться [34]. Основываясь на статистическом анализе, Х.Р.Пургасеми [35] показал, 

что в 94 % опубликованных в период с 2005 по 2016 г. исследований важнейшим фактором, опре-

деляющим оползневую опасность, считалась крутизна склона, за которой следовали литология, 

экспозиция склона, землепользование и высота над уровнем моря (рис.2). 

Исходя из имеющихся данных об особенностях проявления оползневого процесса для состав-

ления карт оползневой восприимчивости и оползневой опасности были выбраны восемь факторов: 

высота над уровнем моря, расстояние до дорог, крутизна склонов, геологическое строение, рас-

стояние от разломов, тип землепользования, экспозиция склонов и расстояние до эрозионной сети. 

Использованная в работе цифровая модель рельефа (DEM) с разрешением 12,5 м была предо-

ставлена Институтом геологических наук Вьетнамской академии науки и технологий. На ее основе 

созданы тематические карты факторов высоты над уровнем моря (рис.3, а), крутизны склонов   

Рис.2. Пятнадцать наиболее значимых факторов оползнеобразования  
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Рис.3. Карты факторов высоты над уровнем моря (а); расстояния до дорог (б); крутизны склонов (в); геологического  

строения (г); расстояния от разломов (д); землепользования (е); экспозиции склонов (ж); расстояния до эрозионной сети (з) 
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(рис.3, в), экспозиции склонов (рис.3, ж), расстояния до эрозионной сети (рис.3, з).  При их по-

строении каждый фактор был разделен на классы, при этом факторы высоты над уровнем моря 

и крутизны склонов – на шесть классов, а фактор экспозиции склонов – на девять. Тематические 

карты расстояния до дорог (рис.3, б), эрозионной сети (рис.3, з) и от разломов (рис.3, д) созданы  

с использованием инструмента «Euclidean Distance» в геоинформационной системе ArcGIS с раз-

делением на шесть классов. Карта землепользования (рис.3, е) получена в результате дешифриро-

вания и классификации спутниковых изображений Sentinel-2. В результате выделены следующие 

классы: городской район (ГР), сельскохозяйственные территории (СХ), кустарники (К), леса (Л)  

и земли, лишенные растительности (ГЗ). Для учета фактора геологического строения (рис.3, г) вы-

делено шесть областей, в которых верхняя часть геологического разреза представлена четвертич-

ными отложениями (Q), отложениями свит Бак Шон, Донг Данг и Шонг Хиен, комплексов Као 

Банг и Пиа Оак.  

Верификация модели. Важным этапом подготовки карт оползневой опасности является опре-

деление степени соответствия полученных моделей реальным фактическим данным. Эта задача 

может быть решена сравнением полученных карт оползневой опасности территории с картой ин-

вентаризации оползней [3]. Когда модель прогноза оползневой опасности может предсказать 

наибольшее количество оползней в зоне с очень высокой опасностью и ни одного в зоне с очень 

низкой опасностью, она считается наиболее достоверной. В данной статье верификация осуществ-

лялась с использованием метода анализа кривой ошибок (Receiver operating characteristic – ROC) 

[36]. ROC-анализ – метод оптимального разграничения двух классов, сформированных с помощью 

диагностического теста. Кривая ROC представляет собой графическое отображение взаимосвязи 

между вероятностью истинно положительных значений (правильно предсказанным событием), 

или чувствительностью по оси Y, и вероятностью ложноположительных значений (неправильно 

предсказанным событием), или 1 – Специфичностью по оси X. Чем ближе кривая ROC приближа-

ется к левому краю графика и верхней его границе, тем достовернее будут результаты выполнен-

ного анализа. Мерой адекватности модели может служить площадь под кривой ROC (Area under 

curve – AUC) – чем больше площадь, тем точнее классификация. Значения AUC могут изменяться 

от 0,5 для моделей с нулевой точностью прогнозирования до 1,0 для моделей с идеальной точно-

стью. Основываясь на классификации Шимундича [37], достоверность полученных карт может 

быть оценена в соответствии со значением AUC следующим образом, %: 90-100 – отличная; 80-90 – 

очень хорошая; 70-80 – хорошая; 60-70 – достаточная; 50-60 – плохая. Предыдущие исследования 

показали, что подход ROC-AUC сам по себе не может обеспечить объективную оценку достовер-

ности моделей [38, 39], так как его результаты зависят от площади выделяемых в зависимости от 

опасности зон. Учитывая этот факт, в настоящем исследовании дополнительно к показателю AUC 

использовался индекс подтверждения – LRclass [40, 41]. При этом подходе показатель AUC приме-

нялся для определения общей эффективности моделей прогнозирования, а индекс LRclass – для 

оценки эффективности прогнозирования в каждой выделенной зоне оползневой опасности. 

Обсуждение результатов. Была проанализирована взаимосвязь между факторами, вызываю-

щими оползни, и фактическим возникновением оползней в районе проводимых исследований. 

Анализ результатов оценки оползневой восприимчивости территории, полученных с использова-

нием метода FR, показал высокую восприимчивость к оползневому процессу участков с высотами 

над уровнем моря менее 600 м и крутизной склонов от 30 до 40. Отмечается повышенная концен-

трация оползней на расстоянии 100 м от дорог и 200 м от разломов, а также в городских и сель-

скохозяйственных районах. Наблюдается корреляционная связь между увеличением частоты 

оползней и уменьшением расстояния до эрозионной сети. В геологическом отношении оползни 

наиболее часто образуются в грунтах четвертичного генезиса и в отложениях свиты Шонг Хиен.  

На рис.4 и в таблице приведены результаты фрактального анализа. Фрактальная размерность 

использовалась для вычисления веса факторов в соответствии с формулой (6). Рассмотрение полу-

ченных результатов показало, что наибольшую роль в возникновении оползней на исследуемой 

территории играет высота над уровнем моря, за которой в порядке убывания значимости следуют 

экспозиция склонов, их крутизна, расстояние от разломов, расстояние до эрозионной сети, геоло-

гическое строение, землепользование и расстояние до дорог.  
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Рис.4. Определение фрактальной размерности факторов оползнеобразования: а – высота над уровнем моря;  

б – расстояние до дорог; в – крутизна склонов; г – геологическое строение; д – расстояние от разломов;  

е – землепользование; ж – экспозиция склона; з – расстояние до эрозионной сети  
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Вес факторов, рассчитанный на основе фрактального анализа 

Фактор 
Формула  

линейной регрессии 

Коэффициент  

корреляции R2 

Фрактальная  

размерность Di 
Вес Wi 

Высота над уровнем моря y = 1,5673x + 0,4596 0,9997 1,5673 0,138 

Расстояние до дорог y = 1,1271x + 1,195 1 1,1271 0,099 

Крутизна склонов y = 1,5216x + 0,3835 0,9998 1,5216 0,134 

Геологическое строение y = 1,404x + 0,8027 0,9999 1,4040 0,123 

Расстояние от разломов y = 1,4787x + 0,7325 0,9993 1,4787 0,130 

Землепользование y = 1,2583x + 1,4289 0,9999 1,2583 0,110 

Экспозиция склона y = 1,563x + 0,5092 0,9997 1,5630 0,137 

Расстояния до эрозионной сети y = 1,4701x + 0,3017 0,9999 1,4701 0,129 

 

Значения индекса оползневой восприимчивости для метода FR изменяются от 0,446 до 3,149, 

для метода FFR от 0,057 до 0,375. С использованием метода классификации естественных границ 

Дженкса (англ. Jenks natural breaks) на основе карт LSI выполнена типизация территории по ополз-

невой опасности. В результате район исследования разделен на пять зон: с очень низкой (ОН), 

низкой (Н), средней (С), высокой (В) и очень высокой (ОВ) оползневой опасностью (рис.5). 

На рис.6 приведены рассчитанные на основе используемых методов площади зон оползневой 

опасности. Методом FFR, в сравнении с методом FR, получена большая площадь зоны с очень 

низкой оползневой опасностью. Напротив, методом FR – большая площадь зон низкой и средней 

оползневой опасности. Зона с очень высокой оползневой опасностью предсказана методом FFR 

(19 %). На рис.6 приведено распределение оползней по количеству в выделенных зонах оползне-

вой опасности. Обе модели имеют хорошую эффективность. К зоне с очень высокой оползневой 

опасностью на основе метода FR отнесено 70 %, на основе метода FFR – 87 % оползней. 
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Рис.5. Карта оползневой опасности, полученная методом FR (а); методом FFR (б) 

Рис.6. Результаты оценки оползневой опасности и достоверности моделей по анализу LRclass 
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Кривые ROC (рис.7), характеризующие 

достоверность полученных результатов, 

также доказали высокую точность выпол-

ненного прогноза оползневой опасности. 

Метод FR показал «хорошую» достовер-

ность прогноза (AUC = 72 %), а метод FFR 

достиг «очень хорошей» достоверности про-

гноза (AUC = 86 %) [37].  

Результаты расчета индекса LRclass  

(см. рис.6) для моделей FR (LRclass = 73 %)  

и FFR (LRclass = 86 %) согласуются с резуль-

татами, полученными на основе анализа кри-

вой ROC. Это также показывает, что хотя ме-

тод FFR предсказывал большую площадь 

зоны с очень высокой опасностью, он не пе-

реоценил ее в районе исследований. Таким 

образом, модель оползневой опасности, по-

лученная на основе метода FFR, обладает 

большей эффективностью в сравнении с 

обычным статистическим методом. 

Заключение. Достоверность оценки оползневой опасности зависит от множества причин, 

включая используемые методы прогноза. В данном исследовании применялось два метода – FR  

и FFR. Для результатов, полученных на основе методов FFR и FR, было проведено сопоставление. 

Отмечено значительное повышение качества прогноза оползневой опасности. Согласно модели 

FFR 24 % площади находится в зоне низкой оползневой опасности, в то время как по модели FR к 

данной зоне было отнесено только 16 % площади исследуемой территории. Полученный результат 

имеет важное практическое значение при планировании развития территорий, в том числе проек-

тировании устойчивых жилых сообществ, которые не будут подвержены воздействию стихийных 

бедствий. Значительная разница в достоверности моделей, полученных методами FFR и FR (14 % 

на основе ROC-анализа и 13 % с использованием индекса LRclass), стала для авторов в определен-

ной степени неожиданным результатом. Его проверка является дальнейшим направлением прово-

димых исследований. Итоговые результаты позволяют сформулировать важное заключение – для 

повышения достоверности карт оползневой опасности весьма перспективным направлением явля-

ется использование комбинированных методов, включающих фрактальный анализ.  
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