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Abstract. The mineralogical and geochemical features of diamond-bearing tourmaline crystals (schorl-uvite series) 

from garnet-clinopyroxene rocks of the Kumdy-Kol deposit (Northern Kazakhstan) have been studied in detail. The 

formation of the main rock-forming minerals (garnet + K-bearing clinopyroxene) occurred in the diamond stability 

field at 4-6 GPa and 950-1000 °C. Crystallization of K-bearing clinopyroxene at these parameters is possible in the 

presence of an ultra-potassic fluid or melt formed because of crustal material melting in subduction zones. Tourmaline 

crystals (up to 1 cm) containing diamond inclusions perform veins crosscutting high-pressure associations. The com-

position of individual zones varies from schorl to uvite within both a single grain and the sample as a whole. The 

potassium content in this tourmaline does not exceed 0.1 wt.% K2O, and the isotopic composition of boron δ11B varies 

from –10 to –15.5 ‰, which significantly differs from the previously established isotopic composition of boron in 

maruyamaite crystals (δ11B 7.7 ‰ in the core and –1.2 ‰ in the rim) of the same deposit. Analysis of the obtained data 

on δ11B in the tourmalines from the diamond-grade metamorphic rocks within the Kumdy-Kol deposit suggests the 

existence of two boron sources that resulted in crystallization of K-bearing tourmaline crystals (maruyamaite-dravite 

series) and potassium-free tourmalines of the schorl-uvite series.  
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Introduction. Accessory minerals (zircon [1-3], cassiterite [4], beryl [5, 6], etc.) and the pecu-

liarities of their composition are widely used in modern mineralogical and petrological reconstruc-

tions. Tourmaline is one of such unique minerals, stable in a wide range of temperatures and pressures 

[7, 8], that allows to reconstruct the composition of the fluid phase in the subduction zones [9, 10]. 

Tourmaline has proven to be a reliable tool in the investigation of the evolution of the fluid compo-

sition in diverse mineral deposits [11, 12]. The identification of diamond crystal inclusions within 

potassium-rich tourmaline crystals [13] in the rocks of the Kumdy-Kol industrial diamond deposit in 

the Kokchetav massif of Northern Kazakhstan has yielded valuable scientific insights. This discovery 

suggests that the crystallization of the tourmaline began at the peak of metamorphism, occurring at 

6 GPa and approximately at 1000 °C, within the diamond stability field. Moreover, this finding has 

led to the recognition of a new tourmaline end-member maruyamaite [14]. However, Ar-Ar dating of 

K-bearing tourmaline [15] and the absence of other high-pressure mineral inclusions in this mineral 

[7, 16] led to doubt the high-pressure origin of maruyamaite. The successful synthesis of K-dravite 

was carried out at a pressure of 4 GPa and 700 °C from an ultra-potassic fluid [17-19], which renewed 
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interest in the high-pressure model of maruyamaite formation. Earlier, another K-containing mineral, 

clinopyroxene (with a K2O content of up to 1.5 wt.%), was identified in the rocks of the Kokchetav 

massif. The origin of this mineral is also associated with high pressures and temperatures in the 

presence of an ultra-potassic fluid (melt) [20-22]. Traces of the existence of ultra-potassium fluids 

(melts) in the same rocks were identified in submicron-sized inclusions in diamond crystals [23], as 

well in rock-forming minerals [24]. Inclusions of diamond crystals in tourmaline were first found in 

the same rock type by V.S.Shatsky, but the composition of tourmaline is unknown. Unlike kimberlite 

diamond crystals, the high-pressure origin of which is beyond doubt [25], the first finds of diamond 

crystals in low-pressure minerals led to the appearance of a metastable model of diamond formation 

in crustal metamorphic rocks [26]. This article presents the results of an isotope-geochemical study 

of crystals of diamond-bearing tourmaline from garnet-clinopyroxene rocks of the Kumdy-Kol de-

posit, and enhances our understanding of the behavior of boron-bearing fluids and melts and of their 

mobility in subduction zones. 

The Kokchetav massif has become widely known due to discovery of diamond in the crustal 

metamorphic rocks [27]. It is located in the central part of the Ural-Mongolian folded belt [28]. The 

Kokchetav massif considered to be a megamelange zone more than 80 km long and about 17 km wide 

[28]. Kumdy-Kol is the most famous site of ultrahigh-pressures rocks within the Kokchetav massif. 

Kumdy-Kol microdiamonds deposit is located on the southern shore of the lake of the same name. 

The internal structure of this block has been ascertained through the results of meticulous geological 

exploration efforts performed in the process of evaluating the reserves of the deposit. Structurally, 

the rocks of the Kumdy-Kol block are oriented subvertically with steeply dipping beds (~70°) in the 

southwest direction. The following rocks types are recognized here: eclogites, amphibolites, car-

bonate-silicate rocks, migmatites, shales, and various gneisses, which are the main type of ores 

[26, 27, 29]. A detailed description of the rocks and ores of the Kumdy-Kol deposit can be found in 

publications [30, 31]. 

Methods. All analyses were obtained at the Analytical Center for multi-elemental and isotope 

research SB RAS and the Institute of Geochemistry CAN (Guangzhou, China). The composition of 

minerals was determined using a Jeol JXA-8100 microprobe with an accelerating voltage of 20 kV 

and a probe current of 30 nA. Natural minerals and synthetic analogues were used as standards [32]. 

In situ analyses of the isotopic composition of boron in tourmaline was carried out on Neptune 

Plus MC-ICP-MS and ELEMENT XR (Thermo Fisher Scientific) equipped with a laser ablation system 

(ArF) with a 193 nm laser (Resolution M-50, Resonetics LLC, USA) at the Institute of Geochemistry, 

CAN. IMR RB2 –12.53±0.57 % was used as the standard for determining the isotopic composition 

of boron; when determining the concentration of trace elements, calibration was performed on TB-1G, 

BCR-2G, BHVO-2G and GSD-1G with further normalization for the SiO2 content in tourmaline. This 

technique is described in detail in [33]. The abbreviation of minerals is given according to the publi-

cation [34]. 

Results and discussion. A sample of garnet-clinopyroxene rock (O24-16) was collected in the 

gallery (24 ort) of the Kumdy-Kol microdiamond deposit. These rocks consist of garnet (60 vol.%) 

and K-bearing clinopyroxene (40 vol.%). In interstitials between garnet and clinopyroxene porphy-

roblasts, potassium feldspar (Kfs) and, less frequently, calcite are present in insignificant amounts. In 

the studied sample, the interlayers enriched with garnet and clinopyroxene are folded (Fig.1). Tour-

maline occupies the central parts of the crosscutting veins, the thickness of which can reach 1.5 cm 

(Fig.1, a). Chlorite and amphibole zones are observed around these veins (Fig.1, b). 

Diamond, rutile, clinopyroxene occur as inclusions in the garnet (Fig.2). Clinopyroxene contains 

inclusions of diamond, garnet and rutile in the cores along with the exsolution lamellae of Kfs and 

phengite (Fig.3, a, b). Inclusions of diamond crystals occur in tourmaline crystals (Fig.3, c, d), as well 

as in amphibole-chlorite aggregates replacing garnet and clinopyroxene. The morphology of all dia-

mond crystals are independent of the host mineral.  
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The compositions of garnet and clinopyroxene crystals are identical to the compositions of the 

garnet and clinopyroxene of the previously studied samples of garnet-clinopyroxene rocks from the 

Kokchetav massif [27, 29]. Garnet porphyroblasts are solid solutions of the pyrope-grossular-alman-

dine, with a homogeneous core (Alm23Sps2Prp25Grs50), and the main compositional changes occur 

Fig.1. Tourmaline-bearing garnet-clinopyroxene rock from the  

exploration gallery of the Kumdy-Kol deposit diamonds (24 ort):  

a ‒ sample section; b ‒ micrograph of the polished plate of the sample 

fragment, demonstrating the substitution of primary associations with 

amphibole and chloride along the tourmaline veins 

а b 

5 mm 10 cm 

250 μm 

Fig.2. Micrograph of a polished plate of a fragment  

of a garnet-clinopyroxene rock sample, demonstrating 

a variety of mineral inclusions in garnet porphyroblasts 

Fig.3. Micrographs of individual sections of the sample of the garnet-clinopyroxene rocks (sample O24-16): 

a, b ‒ clinopyroxene porphyroblasts with exsolution lamellae in the core, surrounded by a clean rim (nichols are parallel  

and crossed, respectively); c ‒ numerous inclusions of diamond crystals (pale yellow crystals) in clinopyroxene and tourmaline;  

d ‒ inclusions of diamond crystals in various zones of tourmaline grains 

а b 

c d 

50 μm 50 μm 

500 μm 100 μm 
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within the thin rims. In the rim zones, the grossular content 

increases while the pyrope content (Alm23Sps2Prp21Grs54) 

decreases simultaneously. The content of almandine and 

spessartine remains almost constant. Clinopyroxene por-

phyroblasts have diopside – hedenbergite compositions. In 

clinopyroxene porphyroblast cores K2O content does not 

exceed 0.3 wt.%, however, the presence of numerous exso-

lution lamellae Kfs and micas (Fig.3, a, b) identified by mi-

croprobe analysis (Fig.3, a, b) indicates that it was origi-

nally potassium-rich clinopyroxene. There are no exsolu-

tion lamellae in the rim zones of porphyroblasts, and the 

K2O content is below the detection limit. 

Macroscopically, in the studied sample tourmaline crys-

tals look almost black (Fig.3, c), whereas in the thin sections 

they are characterized by a pronounced color zonation –  

a brown core and a blue rim (Fig.3, d). According to the chem-

ical composition, these zones can be assigned to schorl and 

uvite according to the classification [35], where the formula 

coefficients were calculated in accordance with the recom-

mendations [35] (see Table, Fig.4).  

Inclusions of diamond crystals (10-300 microns in 

size) were identified in all zones of tourmaline crystals (see 

Fig.3, c, d). This is the first finding of diamond of inclu-

sions in tourmalines of the schorl-uvite series. Previously, 

diamond inclusions were found exclusively in maruyamaite 

crystals [13] and were used as one of the proofs of the high-

pressure origin of this unusual tourmaline. The abnormally 

high potassium contents and unusual isotopic boron com-

position in maruyamaite were also considered an evidence 

of the high-pressure formation of this mineral [13, 36]. In 

the studied sample, tourmaline veins crosscut the initially 

high-pressure minerals – garnet and K-bearing clinopyro-

xene (see Fig.1) and unequivocally prove that the process 

of tourmaline crystallization is temporally distinct from the 

formation of the primary rock-forming mineral assem-

blage. Very low potassium concentrations in the studied 

tourmaline (see Table) do not allow one to date the time of 

its formation by the Ar-Ar method [15] and indicate that the 

ultra-potassic liquid, which is the crystallization medium 

for K-bearing clinopyroxene, could not be the same for 

tourmaline. It appears impossible to get reliable estimates 

of the physico-chemical conditions of crystallization of 

tourmaline grains of the schorl-uvite series, since the stability field for tourmaline of this composi-

tion has not been studied experimentally. Experimental studies of the stability field of dravite in the 

metapelite system reveal that this phase remains stable up to pressures of 5 GPa at ~700 °C [37]. 

However, the schorl is less stable and its decomposition starts at a pressure of 3.5 GPa [38]. At 

ambient pressure the breakdown of uvite occurs in the temperature range of 800-900 °C [39], and 

the products are the rare mineral assemblage indialite (Mg2Al4Si5O18) + yuanfuliite 

(Mg0.75Fe2+
0.3Fe3+

0.5Al0.2Mg0.1Ti0.1(BO3)O) + plagioclase + boron-bearing mullite + hematite. The  

 

Analysis of tourmaline from a sample 

of garnet-clinopyroxene rocks (sample O24-16)  

Composition 
Crystal zone 

Core Rim 

SiO2 35.8 36.0 

TiO2 0.51 0.65 

Al2O3 30.0 29.6 

Cr2O3 bdl bdl 

FeO 10.80 6.48 

MnO 0.07 0.08 

MgO 6.1 9.2 

CaO 2.16 3.16 

Na2O 1.67 1.25 

K2O 0.09 0.05 

F n.a. n.a. 

Σ 87.2 86.5 

B B 3.00 3.00 

T 

Si 5.98 5.97 

Al 0.02 0.03 

Σ 6.00 6.00 

Al (total) 5.92 5.78 

Z 

Al 5.90 5.75 

Cr 0.00 0.00 

Mg 0.10 0.25 

Σ 6.00 6.00 

Y 

Al 0.00 0.00 

Ti 0.06 0.08 

Cr 0.00 0.00 

Fe2+ 1.51 0.90 

Mn2+ 0.01 0.01 

Mg 1.41 2.01 

Σ 3.00 3.00 

X 

Ca 0.39 0.56 

Na 0.54 0.40 

K 0.02 0.01 

Vacancy 0.05 0.03 

Σ 1.00 1.00 

  OH (V+W) 3.66 3.59 

V 
OH 3.00 3.00 

O 0.00 0.00 

W 

OH 0.66 0.59 

F 0.00 0.00 

O 0.34 0.41 

V+W total 4.00 4.00 

 

Notes: bdl – below the limits of detection; 

n.a. – was not analyzed. Structural formula of 

tourmaline XY3Z6(T)6(B)3O18V3W, where Х = (Na, 

Ca, vacancy); Y = (Fe2+/3+, Mg, Mn, Al, Li, Cr, V);  

Z = (Mg, Fe3+, Al, Cr, V); Т = (Si, Al); В = (ВО3);  

V = (OH, O);W = (OH, F, O). 
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effect of pressure on the stability of this type of tourmaline has not yet been investigated. Taking into 

account these experimental data, it can be assumed that the crystallization of the tourmaline of the 

schorl-uvite series should occur at a retrograde stage at a pressure below 3.5 GPa and temperature  

< 900 °C. The coexistence of tourmaline with Kfs (Fig.3, d) further reduces the pressure range in 

which joint crystallization of these minerals can occur, since Kfs is unstable in a water-bearing system 

at pressures above 2 GPa and 600 °C [40], whereas in a dry system tourmaline has not been synthe-

sized [41]. The presence of chlorite- and amphibole-rich zones around tourmaline veins (see Fig.1, b) 

indicates that tourmaline crystallization likely took place before the formation of the mineral assem-

blages typical of the greenschist metamorphic facies.  

The analysis of the boron isotopic composition δ11B in tourmaline crystals of the schorl-uvite 

series varies from –10 to –15.5 ‰ and differs significantly from the isotopic composition of 

maruyamaite crystals (δ11B 7.7 ‰ in the core and –1.2 ‰ in the rim) [7, 36]. There are two alternative 

models to explain the unusual isotopic composition of boron in maruyamaite crystals [7, 36]. According 

to the model proposed in [36], the boron isotopic composition is associated with the subduction of 

crustal material to depths of more than 120 km and with the crystallization of maruyamaite near the 

peak of metamorphism from the fluids derived during the dehydration of serpentinized rocks of the 

lithospheric mantle. However, within the Kokchetav massif, ultramafic rocks are extremely rare and 

within the western Kumdy-Kol block, there is only a small outcrop of garnet-clinohumite rocks [42]. 

An alternative model [7] suggests that this isotopic composition of boron in maruyamaite could have 

arisen because of chromatographic effect during infiltration of boron-rich fluid in mid-crustal condi-

tions. High content of tourmaline (up to 30 vol.%) in these rocks excludes the possibility of its formation 

due to boron present in the protolith. Thus, the formation of tourmaline-rich rocks of the maruyamaite-

dravite series is possible with an intensive metasomatic transformation of the original substrate. Ar-Ar 

Fig.4. Backscattered electron image and characteristic X-ray maps of element distribution  

of the tourmaline crystal (see Fig.3, d) 

δ11В 

–15…–14.3 ‰ 

δ11В 

–15 ‰ 

100 μm 
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dating of potassium-bearing tourmaline crystals has revealed a significant temporal discontinuity 

between its crystallization and the formation of high-pressure mineral assemblages [15]. The obtained 

isotopic data (Fig.5) are characteristic of the tourmaline crystals, the formation of which is associated 

with the fractionation of the boron isotopic composition resulting from metamorphic reactions of 

mica dehydration. The isotopic characteristics of the tourmaline crystals are similar to those found in 

rocks of the continental crust. [7, 36]. The formation of tourmaline veins also requires a significant 

input of boron [7, 43], since its content in meta-sediments rarely exceeds 50-150 ppm [44]. In high-

pressure metamorphic rocks the formation of a boron-enriched fluid is usually associated with the 

decomposition of muscovite-phengite mica at the progressive stage of metamorphism during the sub-

duction of crustal rocks [45]. However, according to experimental data [40], phengite can be stable 

in rocks of the Kokchetav massif up to the peak of metamorphism, and its decomposition may begin 

at the initial stages of exhumation with the formation of a melt [46]. These high-pressure melts can 

Fig.5. Boron isotopic composition in schorl-uvite series tourmaline crystals (red rectangle) from diamond-bearing rocks  

of the Kokchetav massif in comparison with the compositions of tourmaline from other types of rocks and some of the most  

important geochemical reservoirs [7] (arrows show the change in the composition of boron in zonal tourmaline grains  

and are directed from the core to the rim)  

1 – authors' data; 2-5 – types: 2 – A1 (boron released from mica); 3 – A2 (decomposition of boron-bearing minerals); 4 – B (metasomatic influx of 

boron); 5 – C (detrital cores); MORB – basalts of mid-oceanic ridges; HP-sediments – metamorphosed sediments under high-pressure conditions; 

HPM-rocks – high-pressure metamorphic rocks 
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harbor a considerable quantity of water (up to 30 wt.%) and other elements, among them boron. The 

separation of the fluid from this melt is likely to occur at relatively shallow depths (40 km), which 

may indirectly provide evidence in favor of the formation of tourmaline in the final stages of exhu-

mation of high-pressure rocks. Earlier studies have suggested the formation of certain tourmaline 

crystals during the regressive stage [13]. However, due to the absence of isotopic data, the sources 

and timing of boron-bearing fluids involved in the process were not addressed. The discovery of 

diamond-bearing tourmaline crystals (of the maruyamaite-dravite and schorl-uvite series) that exhibit 

distinct isotopic and compositional characteristics suggests that the formation of tourmaline at the 

Kumdy-Kol deposit was not due to a single large source of boron-bearing fluid. Most likely, the 

mobility of boron-bearing fluids was limited during the crystallization of various varieties of tourma-

line, regardless of the conditions (pressure and temperature) of their formation. Furthermore, beyond 

the boron isotopic composition, the composition of these fluids may exhibit variations in terms of 

their potassium content. This can be attributed to the fact that the successful synthesis of potassium-

bearing tourmaline (maruyamaite-dravite series) is exclusively observed in the presence of ultra-po-

tassic fluid [17, 18]. Relics of ultra-potassic fluids were detected in submicron-sized inclusions in 

diamond crystals that came from metamorphic rocks of the Kokchetav massif [23]. However, due to 

the small size of the inclusions, boron concentration was not measured. In rock-forming minerals of 

garnet-clinopyroxene rocks, products of the crystallization of high-pressure melts [24] were identified 

in garnet and clinopyroxene. These inclusions have high potassium contents; the boron concentrations 

are as high as 28 ppm [24]. Fractionation and evolution of the composition of these melts during the 

retrograde stage of metamorphism could lead to the separation of fluids enriched in boron and potas-

sium. These fluids are a prerequisite for the crystallization of potassium-bearing tourmaline of the 

maruyamaite-dravite series, and one should expect to find them in garnet-clinopyroxene rocks. In 

contrast, only schorl-uvite series tourmaline crystals with a potassium concentration of up to 0.1 wt.% 

(see Table) containing diamond inclusions were found (see Fig.3) in garnet-clinopyroxene rocks. This 

finding excludes the possibility of the participation of high-pressure fluids and (or) melts in the for-

mation of diamond-bearing tourmaline crystals in the studied samples. Diamond crystals are relics of 

the ultra-high pressure mineral assemblage destroyed to varying degrees by later metasomatic pro-

cesses in garnet-clinopyroxene and tourmaline-Kfs-quartz rocks of the Kumdy-Kol deposit. 

Conclusions. The comprehensive mineralogical and geochemical study of diamond-bearing 

tourmaline crystals (schorl-uvite series) from garnet-clinopyroxene rocks of the Kumdy-Kol deposit 

(Northern Kazakhstan) and comparison with previously published data for maruyamaites have re-

vealed the existence of contrasting sources of boron-bearing fluid (enriched in heavy and light boron 

isotopes) that led to the formation of the mentioned tourmaline varieties within one deposit. If the 

formation of tourmalines occurred synchronously, then the mobility of fluids in deeply subducted 

crustal rocks was very limited. The identification of diamonds in mineral inclusions should be ap-

proached with great prudence when it comes to subsequent petrological reconstructions, owing to the 

notable resistance of this mineral to retrograde transformations of mineral assemblages in high-pres-

sure rocks. 
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