УДК 622.243.92

Методология расчета технической эффективности силовых секций малогабаритных винтовых забойных двигателей для системы «Перфобур»

И.А.ЛЯГОВ¹ , Ф.Д.БАЛДЕНКО², А.В.ЛЯГОВ³, В.У.ЯМАЛИЕВ³, А.А.ЛЯГОВА⁴

¹ООО «Перфобур», Москва, Россия

² Российский государственный университет нефти и газа (НИУ) имени И.М.Губкина, Москва, Россия

³Уфимский государственный нефтяной технический университет, Уфа, Республика Башкортостан, Россия

⁴ Санкт-Петербургский горный университет, Санкт-Петербург, Россия

С ростом доли старых и низкодебитных скважин и для эффективной эксплуатации месторождений необходимо приобщать к разработке продуктивные пласты малой мощности. Существует много скважин, где бурение боковых стволов и гидроразрыв пласта затруднительны из-за близкого расположения газовой шапки и подстилающей воды в силу геолого-технологических причин, а применение существующих технологий вторичного вскрытия не эффективно из-за обширной зоны кольматации или заколонной циркуляции. Возрастает актуальность применения технологий радиального бурения, позволяющего вскрывать пласт сетью протяженных каналов для установления качественной гидравлической связи между пластом и скважиной без ущерба для проницаемости пласта.

В отличие от технологий радиального бурения, использующих гидронамыв, в технической системе (TC) «Перфобур» для строительства каналов используются малогабаритные винтовые забойные двигатели (ВЗД) и породоразрушающий инструмент. Для эффективного фрезерования эксплуатационных колонн и разрушения горной породы гидравлический забойный двигатель должен обладать высоким крутящим моментом, а для возможности бурения с высоким темпом набора угла – иметь короткую силовую секцию. Существующие отечественные и зарубежные ВЗД имеют ограниченный ряд типоразмеров и не отвечают требованиям, заложенным в техническое задание на разработку забойного модуля TC «Перфобур».

В статье рассмотрены вопросы разработки универсальных малогабаритных секционных винтовых забойных двигателей для фрезерования обсадных колонн и бурения сети разветвленных каналов сверхмалого диаметра и радиуса кривизны в составе TC «Перфобур». Предложенная в статье методология выбора оптимальной конфигурации силовых секций ВЗД позволяет сконструировать малогабаритный секционный забойный двигатель, отвечающий техническим требованиям и обладающий улучшенными характеристиками по сравнению с серийными ВЗД.

Ключевые слова: перфобур, вторичное вскрытие продуктивного пласта, повышение нефтеотдачи, глубокое перфобурение, винтовой забойный двигатель

Как цитировать эту статью: Методология расчета технической эффективности силовых секций малогабаритных винтовых забойных двигателей для системы «Перфобур» / И.А.Лягов, Ф.Д.Балденко, А.В.Лягов, В.У.Ямалиев, А.А.Лягова // Записки Горного института. 2019. Т. 240. С. 694-700. DOI: 10.31897/PMI.2019.6.694

Введение. Развитие нефтегазового комплекса страны во многом связано с разработкой и внедрением инновационных технологий в области бурения и ремонта нефтяных и газовых скважин. Таким технологическим комплексом является предложенная ООО «Перфобур» техническая система скважинного и наземного оборудования для бурения многозабойных каналов (стволов сверхмалого диаметра и радиуса кривизны) по прогнозируемой траектории из вырезанного окна в обсадной колонне [1, 3, 4, 7-9, 16, 17, 19].

Модернизированная конструкция TC «Перфобур» изготовлена в модульном исполнении для удобства сборки на устье скважины и повышения эффективности эксплуатации. Основными элементами TC являются: жесткая компоновка (трубный толкатель), соединенная вверху с переливным клапанным модулем, а внизу с направляющим устройством, связанным посредством гидротолкателя (работающего в режимах демпфера-осциллятора) и гибкой компоновкой труб с мологабаритным (не серийным) секционным ВЗД, и долотом (фрезой при вырезании окна). Снизу к трубному корпусу подсоединен специальный клин-отклонитель и якорный модуль с ориентирующей воронкой (рис.1).

Модульный вариант конструкции «Перфобура» позволяет компоновать нижний модуль в виде технических комплексов регламентировано ориентированных многочисленных клиньев отклонителей, размещенных последовательно даже в горизонтальных стволах скважин, с возможностью ступенчатого извлечения и обратной установки, в том числе с корректирующей их ори-

ентацией. Технология позволяет создавать скелетоподобные разветвленные с прогнозированно ориентированной траекторией каналы как в открытых (карбонатных), так и в обсаженных скважинах при вторичном вскрытии продуктивных коллекторов нефтяных и газоконденсатных месторождений.

Над ВЗД расположены модуль автономного инклинометра и специальное струйное устройство для дозирования подачи бурового раствора на входе ВЗД и эффективной транспортировки выбуренной породы. Спуск в скважину компоновки осуществляется по технологическим насосно-компрессорным трубам (ТНКТ), гибким насосно-компрессорным трубам (ГНКТ) или бурильным трубам.

Основными элементами комплекса «Перфобур» являются рабочие органы ВЗД, которые создают необходимый крутящий момент для привода фрез, вырезающих окна в обсадной колонне, или долот, разбуривающих горную породу по сверхмалому радиусу искривления канала (рис.2).

В качестве рабочих органов (PO) двигателя используется многозаходный винтовой героторный механизм (пара ротор-статор) с циклоидальным профилем зубьев (рис.3), который эффективно применяется в отечественной и зарубежной практике бурения и ремонта скважин [1, 2, 19].

Ограниченность в диаметральных и осевых габаритах винтовой пары, обусловленная общими жесткими требованиями, предъявляемыми к забойной компоновке ТС «Перфобур», вынуждает переходить к коррекции и уточнению принятых подходов при проектировании винтовых пар, что приводит к применению нестандартных технических решений, способствующих достижению заданных характеристик ВЗД и связанных с необходимостью получения высоких крутящих моментов при отмеченных ограничениях [6, 13].

Постановка проблемы. Рассмотрим проблему увеличения качественных показателей эффективности ВЗД. Для объемной винтовой гидромашины,

Рис.1. Забойные модули ТС «Перфобур»

1 – отверстие под крюк; 2 – фильтр; 3 – клапанный узел; 4 – цементный камень; 5 – обсадная колонна; 6 – колонна НКТ/ГНКТ; 7 – корпус трубный;
8 – толкатель; 9 – направляющий паз; 10 – шпонка; 11 – гидронагружатель;
12 – гибкая труба; 13 – разгрузочный паз; 14 – клин-отклонитель;
15 – автономный инклинометр; 16 – ВЗД; 17 – центратор; 18 – долото/фреза;
19 – перфорационный канал; 20 – КНБК перфобура; 21 – ориентирующее

устройство; 22 – захват; 23 – якорь (труба профильная)

Рис.2. Компоновка ТС «Перфобур» в горизонтальном стволе скважины

рабочий процесс которой детально изучен [1, 5, 14], характеристика частоты вращения n и крутящего момента M для заданного расхода рабочей жидкости Q, назначенного по условиям промывки канала в скважине и с учетом характеристик буровых насосов, напрямую связана с рабочим объемом V:

$$n = \frac{Q}{V} \eta_{o}; \quad M = \frac{PV}{2\pi} \eta_{\text{\tiny FM}}, \tag{1}$$

где η_o – объемный КПД; $\eta_{\text{гм}}$ – гидромеханический КПД; P – перепад давления.

В связи с этим увеличение крутящего момента *М* винтовой пары в общем случае может быть достигнуто тремя способами:

• увеличением рабочего объема

$$V = z_2 ST$$

где *z*₂ – заходность; *S* – площадь живого сечения; *T* – шаг винтовой поверхности.

• увеличением перепада давления Р;

• снижением гидромеханических потерь (повышением гидромеханического КПД $\eta_{\text{гм}}$).

Отличительная особенность РО малогабаритных ВЗД состоит в том, что с уменьшением контурного диаметра резко снижается площадь живого сечения S, поэтому для сохранения рабочего объема требуется значительное увеличение шага винтовой поверхности T, что входит в противоречие с необходимостью иметь значительное число шагов РО для создания высокого перепада давления. Возможный путь преодоления данной проблемы, основанный на увеличении заходности z_2 винтовой пары, как следует из общей теории одновинтовых гидромашин, разработанной отечественными учеными и специалистами [9], оказывается действенным лишь до определенного предела, поскольку при числе заходов более 10 кривая рабочего объема выполаживается, и решением данной задачи остается единственный путь, связанный с попыткой максимального увеличения площади живого сечения S и снижения шага РО.

Другой отличительной особенностью малогабаритных ВЗД является увеличение их быстроходности по сравнению со средне- и крупногабаритными двигателями (диаметром 127 мм и более) [1, 2, 5, 6]. Теоретически это объясняется тем, что при прочих равных условиях рабочий объем ВЗД пропорционален кубу диаметра D корпуса PO, а площадь кольцевого сечения $F_{\kappa n}$ скважины – квадрату D. В результате зависимость частоты вращения от геометрических параметров и расхода жидкости можно представить в виде обратно пропорциональной функции от диаметра

$$n = \frac{Q}{V} \eta_{\rm o} = \frac{v_{\rm km} F_{\rm km}}{V} \eta_{\rm o} = C \frac{v_{\rm km}}{D}$$

где *С* – постоянная данного типоразмера ВЗД, *v*_{кп} – скорость восходящего потока в кольцевом пространстве скважины.

Для преодоления данной закономерности и снижения частоты вращения при уменьшении диаметра ВЗД в ряде случаев используют РО с увеличенным шагом (коэффициентом формы винтовой поверхности более 8), однако это приводит к удлинению винтовой пары, усложнению технологии изготовления статора и уменьшению числа шагов РО, что снижает нагрузочную способность гидромашины.

Искомые технические характеристики ВЗД для ТС «Перфобур»:

Диаметр корпуса, мм	.47-49
Максимальная длина рабочих органов	
(с учетом резьб и размещения шарнира) L, мм	650
Расход жидкости <i>Q</i> , л/с	.1-2
Частота вращения <i>n</i> , об/мин	100-150
Крутящий момент на выходном валу, Н м	150
Крутящий момент одной пары М, Н м	75
Перепад давления одной пары Р, МПа	4

Фирма-изготовитель: модель	Расход <i>Q</i> , л/с	Момент силы <i>М</i> , Н∙м	Частота вращения <i>n_x</i> , мин ⁻¹	Перепад давления <i>Р</i> , МПа	Заходность і	Число шагов k	Длина РО <i>L</i> _{акт} , мм	Межвитковый перепад давления <i>Р</i> _к , МПа
ВНИИБТ-БИ: Д43.5/6.42 Д43.3/4.50 Д43.5/6.36	0,2-0,5 1-2 1-2	30-60 30-60 80-150	120-294 138-336 282-564	2,5-5,4 [*] 2,0-5,2 [*] 4,5-7,0 [*]	5:6 3:4 5:6	4,2 5 3,6	760 1000 1300	0,35 0,40 0,50
Радиус-Сервис: RS043N518	0,8-2,5	110	160-520	3,1*	5:6	3,3	1500	0,36
ПНМР: Д-43.5/6.10	0,8-2,5	110	179-611	3,7*	5:6	_	970	_
ИнБурТех: ДП-43.5/6.36	1-2	60-110	282-564	3-6	5:6	3,6	1300	0,38
NOV: 1-11/16"5/6.5,0 CT	1,6-2,8	165(248)	323-582	5(7,5) [*]	5:6	5	_	0,3(0,4)
Lilin: 5LZ43-7,0L-4-192	0,8-1,6	56	435-870	3,2	5:6	4	_	0,17

Удифференциальный перепад давления

В настоящее время ведущие отечественные и зарубежные фирмы-изготовители ВЗД серийно выпускают ограниченный ряд типоразмеров малогабаритных двигателей в диаметральном размере 43 мм. В таблице представлены основные технические показатели серийных винтовых малогабаритных забойных двигателей (*D* = 43 мм) производства российских (ВНИИБТ-БИ, Радиус-Сервис, ПНМР, ИнБурТех), западных (NOV) и китайских (Lilin, JM) компаний [14, 15, 18].

Анализ таблицы позволяет сделать вывод, что ни один из серийных малогабаритных двигателей отечественного и зарубежного производства в полной мере не отвечает требованиям, заложенным в техническом задании на разработку забойного модуля TC «Перфобур» по причине либо недостаточного крутящего момента, либо чрезмерной длины винтовых рабочих органов.

Методология. Выберем оптимальные диапазоны безразмерных геометрических параметров рабочих органов. Геометрия РО одновинтовой гидромашины с циклоидальным зацеплением при заданном контурном диаметре D_{κ} полностью характеризуется следующими безразмерными параметрами [1, 5]: кинематическим отношением $i = z_2/z_1$; коэффициентом внецентроидности $c_0 = r/e$; коэффициентом формы зуба $c_e = r_{\mu}/e$; коэффициентом смещения $\xi = \Delta x_1/e$; коэффициентом натяга $c_{\delta} = \delta/d_{cp}$; коэффициентом формы поверхности $c_T = t/d_{cp}$; числом шагов k = L/T, где z_1 , z_2 – число зубьев статора и ротора; r – радиус катящейся окружности; e – эксцентриситет; r_{μ} – радиус эквидистанты; Δx_1 – смещение исходного контура циклоидальной рейки; δ – диаметральный натяг; t, d_{cp} – шаг и средний диаметр поверхности ротора.

В настоящее время при проектировании РО винтовых гидромашин принята концепция, согласно которой из семи указанных безразмерных коэффициентов строго регламентируются только два – коэффициенты внецентроидности и формы зуба, значения которых по ОСТ 39-164-84 составляют $c_0 = 1,175$; $c_e = 2,175$.

Выбор других коэффициентов зависит от режима эксплуатации винтового механизма и конструктивных требований. Коэффициент натяга c_{δ} назначается исходя из достижения необходимой нагрузочной способности гидромашины, а коэффициент формы винтовой поверхности c_T – по минимуму длины контактных линий насоса или по условиям пуска $c_T = 5-7 - для$ ВЗД [1, 11, 12]. Коэффициент формы винтовой поверхности c_T наряду с коэффициентом смещения ξ является свободной переменной величиной и определяется после расчета шагов винтовых поверхностей РО, необходимых для обеспечения заданного рабочего объема (для данного кинематического отношения и площади живого сечения). Число шагов винтовой поверхности статора k, определяющее осевой габарит РО, назначается в зависимости от крутящего момента или требуемой долговечности винтовой пары с учетом допускаемого межвиткового перепада давления. Данный подход принят и при разработке методики проектирования РО универсального высокомоментного малогабаритного ВЗД для использования в технологическом комплексе «Перфобур».

Современные подходы к выбору свойств эластомера обкладки указывают на возможность увеличения нагрузочной способности винтовой гидромашины. Так, например, применительно к ВЗД фирма NOV в своих каталогах демонстрирует возможность значительного роста крутящего момента (на 50%) при переходе от стандартной резины к специальному эластомеру типа PowerPLUS для любых диаметральных размеров. Поэтому подбор эластомера обкладки статора наряду с оптимизацией геометрических параметров PO также является перспективным направлением совершенствования характеристики малогабаритного ВЗД.

Выбор оптимальных параметров PO является наиболее ответственным этапом при проектировании винтовых гидромашин. При оптимизации в общем случае используются следующие критерии сравнения [1, 10]:

• геометрические – контурный диаметр D_{κ} , кинематическое отношение *i*, эксцентриситет *e*, рабочий объем *V*, длина *L* (число шагов *k*) РО, площадь S и периметр L_{Γ} живого сечения, площадь проекции контактых линий S_{κ} , гидравлический радиус сечения $R_{\Gamma} = S/L_{\Gamma}$, приведенный радиус кривизны ρ_{np} , высота зубьев h = 2e, число линий контакта;

• энергетические – длина контактных линий L_{κ} , межвитковый перепад давления P_{κ} ; гидромеханический КПД $\eta_{\Gamma M}$; гидравлические потери P_{Γ} ;

• долговечности – контактное напряжение K в зацеплении зубьев, скорость скольжения v_{ck} , осевая скорость жидкости w, частота нагружения эластичной обкладки статора f, инерционная сила F_{uh} на роторе из-за планетарности его движения; перекашивающий момент M_{n} ;

Рис.4. Изолинии перемещения точек ротора и статора в характерных сечениях рабочих органов с кинематическим отношением 9:10

Рис.5. Алгоритм выбора оптимального варианта рабочих органов винтовой секции

• технологические – коэффициент неравномерности диаметральных размеров профиля (по выступам и впадинам) $c_{\Delta h}$, относительный геометрический коэффициент L/D_{κ} , определяющий соотношение между осевым и диаметральным габаритами PO.

Уточненное определение напряженно-деформированного состояния РО ВЗД и расчет контактных напряжений и деформаций различных зубьев обкладки статора для заданных нагрузок производится на основе программного комплекса ANSYS с использованием плоского или пространственного моделирования винтовых поверхностей РО. Пример компьютерного расчета перемещений сечений ротора и статора для РО представлен на рис.4.

Обсуждение. После анализа всех критериев, определяющих геометрические, эксплуатационные и технологические параметры ВЗД, принимается окончательное решение по выбору оптимального варианта исполнения РО, алгоритм которого представлен на рис.5. Далее переходят к разработке конструкторскотехнологической документации для изготовления ротора и статора.

Комплексный анализ геометрических и эксплуатационных критериев сравнения с использованием предложенного алгоритма позволил сформулировать принципы, заложенные в основу ме-

тодологии выбора ОПТИмального варианта РО универсального высокомоментного малогабаритного ВЗД для ТС «Перфобур»:

• полное использование полезной площади сечения (диаметрального габарита) ВЗД с целью получения максимально возможного контурного (по впадинам зубьев статора) диаметра РО;

• использование многозаходных винтовых пар с кинематическим отношением в интервале 7:8-9:10;

Рис.6. Модельный ряд компоновок низа бурильной колонны ТС «Перфобур»

 профилирование PO от циклоидальной рейки с отрицательным смещением, соответствующему корригированному профилю с коэффициентом $\xi = -1$, что обеспечивает максимум площади живого сечения;

• назначение активной длины эластичной обкладки исходя из полуторошагового статора (k = 1,5), что позволяет сохранять относительно высокое число контактных линий (не менее 5), отделяющих вход и выход гидромашины, при минимальном осевом габарите;

• применение эластомеров обкладки статора со специальными физико-механическими свойствами, отличающимися повышенной твердостью эластомера с целью сохранения высокой нагрузочной способности при снижении числа контактных линий и увеличении межвиткового перепада давления по отношению к стандартным РО серийных двигателей.

В зависимости от мощности продуктивного коллектора компанией «Перфобур» разработан модельный ряд компоновок с различными радиусами кривизны R = 3,5-12 м и габаритными размерами специальных ВЗД (рис.6).

Заключение. Разработанная методология выбора оптимального варианта РО универсального высокомоментного малогабаритного ВЗД для ТС «Перфобур» позволила сконструировать секционные двигатели в габарите 43-54 мм с улучшенными характеристиками по сравнению с серийными ВЗД. Выпуск опытных образцов многосекционных ВЗД и их успешные стендовые и промысловые испытания в 2018-2019 гг. в Урало-Поволжской и Западно-Сибирской нефтегазовых провинциях в составе TC «Перфобур» доказали правильность выбранной технологической стратегии.

ЛИТЕРАТУРА

1. Балденко Д.Ф. Одновинтовые гидравлические машины. В 2-х т. / Д.Ф.Балденко, Ф.Д.Балденко, А.Н.Гноевых. М.: ИРЦ Газпром.

2. Вадецкий Ю.В. Особенности технологии бурения винтовыми забойными двигателями / Ю.В.Вадецкий, В.А.Каплун, И.К.Князев // Нефтяное хозяйство. 1976. № 6. С. 7-10.

3. Гусман М.Т. Новый объемный забойный двигатель / М.Т.Гусман, С.С.Никомаров, А.М.Кочнев // Нефтяное хозяйство. 1970. № 11. С. 8-12.

4. Захаров Ю.В. Исследование осевых сил, действующих в забойном винтовом двигателе // Машины и нефтяное оборудование. 1978. № 5. С. 9-11.

5. Касьянов В.М. Гидромашины и компрессоры. М.: Недра, 1981. 295 с.

6. Коротаев Ю.А. Технологическое обеспечение долговечности многозаходных винтовых героторных механизмов гидравлических забойных двигателей. М.: ВНИИОЭНГ, 2003. 259 с.

7. Кочнев А.М. Некоторые особенности рабочего процесса винтового забойного двигателя / А.М.Кочнев, Ю.В.Захаров, С.С.Никомаров // Машины и нефтяное оборудование. 1979. № 1. С. 19-23.

8. Купавых К.С. Анализ эффективности применения двух рабочих жидкостей с различными вязкоупругими характеристиками при гидродинамическом воздействии на призабойную зону пласта / К.С.Купавых, А.С.Купавых, В.А.Моренов // Наука и техника. 2019. Т. 18 (2). С. 164-170. DOI: 10.21122/2227-1031-2019-18-2-164-170

9. Лягов А.В. Выбор допустимых радиусов кривизны скважин сверхмалого диаметра (каналов) для технической системы «Перфобур» / А.В.Лягов, И.А.Лягов // Экспозиция Нефть Газ. 2014. № 6. С. 47-52.

700

10. Лягов И.А. Анализ результатов промысловых испытаний технической системы «Перфобур». Аналитический синтез базовых узлов «Перфобура» повышенной надежности для бурения сверхдлинных каналов по прогнозируемой траектории // Нефтегазовое дело. 2014. № 1. С. 52-76.

11. *Молодило В.И.* Автоматизация процесса бурения скважин с использованием винтовых забойных двигателей / В.И.Молодило, Ю.А.Коротаев, А.Ю.Медведев // Автоматизация, телемеханизация и связь в нефтяной промышленности. 2002. № 1-2. С. 17-21.

12. Плотников В.М. Стендовые исследования характеристик винтового забойного двигателя при использовании в качестве рабочего агента аэрированных промывочных жидкостей // Труды ВНИИБТ. Сборник статей. ОАО «НПО «Буровая Техника». М.: Изд-во «Современные тетради». 2008. № 2 (70). С. 338-340.

13. Селиванов С.М. Новая страница в развитии конструкций ВЗД / С.М.Селиванов, Д.И.Балетинских // Бурение и нефть. 2011. № 7-8. С. 64-67.

14. Серийные двигатели. Компания «Радиус-Сервис». URL: http://radius-s.ru/oborudovanie/vintovye-zaboynye-dvigateli/ dvigateli/ (дата обращения: 02.07.2019).

15. Технические характеристики ВЗД диаметром 43-127 мм. Компания «ВНИИБТ-Буровой инструмент». URL: http://www.vniibt-bi.ru/products/vintovye-zaboynye-dvigateli-vzd-klapany-filtry-i-shlamouloviteli/dimension43-127mm/ (дата обращения: 02.07.2019).

16. Шипулин А.В. Повышение энергоэффективности насосного агрегата при формировании трещин импульсного гидроразрыва / А.В.Шипулин, К.С.Купавых, А.С.Купавых // Научно-технические ведомости СПбГПУ. 2016. № 4. С. 39-44. DOI: 10.5862/JEST.254.5

17. Analytical research and experimental tests on the technology fov drilling small diameter channels with small radius of curvature / I.A.Lyagov, N.I.Vasilev, M.Reich, M.Mezzetti // Oil Gas European Magazine. 2014. Vol. 40. Iss. 3. P. 124-129.

18. Downhole Motor. Lilin Group. URL: http://lilingroup.com/product-Motor.asp (дата обращения: 02.07.2019).

19. *Samuel R*. Positive Displacement Motors. Theory and Applications / R.Samuel, D.Baldenko, F.Baldenko. Houston, Texas: Sigmaquadrant, 2015. 434 p.

Авторы: И.А.Лягов, канд. техн. наук, генеральный директор, ilyagov@perfobur.com (ООО «Перфобур», Москва, Россия), Ф.Д.Балденко, канд. техн. наук, доцент, ba3 podval@inbox.ru (Российский государственный университет нефти и газа (НИУ) имени И.М.Губкина, Москва, Россия), А.В.Лягов, д-р техн. наук, профессор, Lyagovs@mail.ru (Уфимский государственный нефтяной технический университет, Уфа, Республика Башкортостан, Россия), В.У.Ямалиев, д-р техн. наук, профессор, заведующий кафедрой, vilyzich@yandex.ru (Уфимский государственный нефтяной технический университет, Уфа, Республика Башкортостан, Россия), А.А.Лягова, канд. техн. наук, ассистент, Lyagova_AA@pers.spmi.ru (Санкт-Петербургский горный университет, Санкт-Петербург, Россия).

Статья поступила в редакцию 03.07.2019.

Статья принята к публикации 20.09.2019.