Submit an Article
Become a reviewer
Viktoria A. Pochechun
Viktoria A. Pochechun
Head of Laboratory, Ph.D., Dr.Sci.
Institute of Economics, Ural Branch of the RAS
Head of Laboratory, Ph.D., Dr.Sci.
Institute of Economics, Ural Branch of the RAS

Articles

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-09-30
  • Date accepted
    2023-02-13
  • Online publication date
    2023-03-13
  • Date published
    2023-04-25

Hydrogeoecological conditions of technogenic groundwater in waste disposal sites

Article preview

The specific hydrogeoecological conditions of aquifers of some technogenic formations, mainly iron ore skarn-magnetite and titanium-magnetite formations, are considered. The resulting wastes, which are stored in waste disposal sites during development of deposits, due to the impact of a number of factors (natural and technogenic) form technogenic waters. Waste disposal facilities are complex engineering structures (dumps and sludge storages), which in turn create their own hydrogeoecological conditions, which must be investigated in order to prevent and minimize environmental and economic damage caused by these objects to the aquatic environment. The paper presents long-term field and laboratory studies of the aquatic environment under the influence of a waste disposal facility in the Middle Urals – one of the largest tailings, representing a potential environmental and man-made hazard. This tailing dump contains tens of tons of waste – enrichment tailings and creates specific hydrogeoecological conditions on the territory. Based on many years of monitoring studies, an analysis of these conditions was carried out – the quality of groundwater affected by the tailings was assessed. It is shown that groundwater is of technogenic nature, i.e. are man-made waters that have a significant impact on the surface and underground hydrospheres of the territory.

How to cite: Semyachkov A.I., Pochechun V.A., Semyachkov K.A. Hydrogeoecological conditions of technogenic groundwater in waste disposal sites // Journal of Mining Institute. 2023. Vol. 260. p. 168-179. DOI: 10.31897/PMI.2023.24