The results of isotopic and geochronological study of zircon from rare-metal pegmatites of the Okhmylk deposit are presented. There were no reliable data on the age of lepidolite-spodumene-pollucite pegmatites of this and the other deposits spatially located within the Archean Kolmozero-Voron’ya greenstone belt. The earlier estimates of the pegmatite age indicate a broad time range from 2.7 to 1.8 Ga. Zircon in the studied pegmatites is characterized by inner heterogeneity, where core and rim zones are distinguished. Minor changes are observed in the core zones, they have a spotted structure and contain numerous uranium oxide inclusions. According to X-ray diffraction analysis, zircon crystallinity is preserved completely in these areas. Complete recrystallization with modification of the original U-Pb isotopic system occurred in the zircon rims. New U-Pb (zircon) isotopic and geochronological data of 2607±9 Ma reflect the time of crystallization of pegmatite veins in the Okhmylk deposit. Isotopic data with ages of ~1.7-1.6 Ga indicate later hydrothermal alteration. The obtained results testify to the Neo-Archean age of the formation of the Okhmylk deposit 2.65-2.60 Ga, reflecting the global age of pegmatite formation and associated the world's largest rare-metal pegmatite deposits.
Mineralogical, petrophysical and geochemical studies have been carried out to determine the sequence and formation conditions of uranium mineralization within the Litsa ore occurrence (Kola Region). Mineralogical studies show the following formation sequence of ore minerals: uraninite – sulfides – uranophane, coffinite, pitchblende. Two stages of uranium mineralization are distinguished: Th-U (1.85-1.75 Ga) and U (400-300 Ma). The distribution of physical properties of rocks in the area is consistent with the presence of two temporal stages in the formation of mineralization with different distribution and form of uranium occurrence in rocks. The factors that reduce rock anisotropy are the processes of migmatization and hydrothermal ore mineralization, which heal pores and cracks. Fluid inclusions in quartz studied by microthermometry and Raman spectroscopy contain gas, gas-liquid and aqueous inclusions of different salinity (1.7-18.4 wt.% NaCl-eq.). According to homogenization temperatures of inclusions in liquid phase, the temperature of the Paleoproterozoic and Paleozoic stages of uranium mineralization at the Litsa ore occurrence is ~ 300 and 200 °С, respectively. Correlations of the spatial distribution of elastic anisotropy index with an elevated radioactive background allow using this petrophysical feature as one of the prognostic criteria for uranium and complex uranium mineralization when carrying out uranium predictive work.