Submit an Article
Become a reviewer
Vol 204
Pages:
46
Download volume:
Engineering geodesy

The isolation of landslide-prone territory using the neural network method

Authors:
A. A. Kuzin
About authors
  • National Mineral Resources University (Mining University)
Date submitted:
2016-11-01
Date published:
2013-05-01

Abstract

The method neural networks of back propagation is discussed in this paper. Parameters of the original data for zoning and structure of the neural network are defined. It shows the results  and assessments of accuracy landslide areas identification within Krasnaya Polyana. Proposal on the use of digital elevation models produced with high-precision geodetic techniques to improve the reliability of the simulation results is made.

Go to volume 204

References

  1. Рассел С. Искусственный интеллект: современный подход / С.Рассел, П.Норвиг. М.: ООО «И.Д.Вильямс», 2006. 1424 с.
  2. Хайкин С. Нейронные сети: полный курс: Пер. с англ. М.: ООО «И.Д.Вильямс», 2006. 1104 с.
  3. Pradhan B. Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modeling / B.Pradhan, S.Lee. // Environmental Modelling & Software, 2010. Р.747-759.

Similar articles

Automation of architecture and urban-planning authority as the basis of strategic planning
2013 P. P. Spirin, E. B. Bezhaeva, V. F. Kovyazin, E. D. Asetskaya
Determining of the parameters of water conducting fracture zone through values of underminen strata horizontal deformations values
2013 V. N. Gusev, D. A. Ilyukhin, A. G. Aleksenko
The method of geodetic measurument of Saint Nicholas Naval Cathedral deformation in the town of Kronstadt
2013 O. S. Stepanova, G. V. Makarov
Influence of changes in constructive elements of protective constructions on behavior of the soil massif near deep ditches
2013 D. A. Potemkin
The method of the geometric addition of forces over the most stressed slip surface in estimation of open-pit slope stability
2013 A. M. Mochalov, A. A. Pavlovich, V. A. Kubarev
Ultrasonic study of creep in polycrystalline rocks
2013 V. M. Tsaplev, R. M. Ivanyuk, V. V. Zverevich