Submit an Article
Become a reviewer
Research Article
Sustainable Development and Environmental Safety

Forecast of radionuclide migration in groundwater of the zone affected by construction drainage at the Leningrad NPP-2

Valentina A. Erzova1
Vyacheslav G. Rumynin2
Anton M. Nikulenkov3
Konstantin V. Vladimirov4
Sergei M. Sudarikov5
Mariia V. Vilkina6
  • 1 — Postgraduate Student Saint Petersburg Mining University ▪ Orcid
  • 2 — Ph.D., Dr.Sci. Director Saint Petersburg Branch of the Institute of Geoecology named after E.M.Sergeev, RAS ▪ Orcid
  • 3 — Ph.D. Leading Researcher Saint Petersburg Branch of the Institute of Geoecology named after E.M.Sergeev, RAS ▪ Orcid
  • 4 — Junior Researcher Saint Petersburg Branch of the Institute of Geoecology named after E.M.Sergeev, RAS ▪ Orcid
  • 5 — Ph.D., Dr.Sci. Professor Saint Petersburg Mining University ▪ Orcid
  • 6 — Junior Researcher Saint Petersburg Branch of the Institute of Geoecology named after E.M.Sergeev, RAS ▪ Orcid
Date submitted:
Date accepted:
Date published:


The distribution of natural (at the level of global background) and technogenic radionuclides in groundwater of the industrial zone in Sosnovy Bor town, where several nuclear power facilities are operating, was analyzed. The main technogenic radionuclides recorded in groundwater samples are cesium ( 137 Cs), strontium ( 90 Sr), and tritium isotopes. The first two aquifers from the surface are subject to contamination: the Quaternary and the upper zone of the Lomonosov aquifer. Based on extensive material on the engineering and geological studies of the work area, a 3D geological model and hydrodynamic and geomigration models of the industrial zone were constructed. By means of modeling, the extent and nature of changes in hydrogeological conditions of area resulting from the construction and operational drainage of the new stage of the Leningrad Nuclear Power Plant (LNPP-2) were determined. The “historical” halo of radioactive contamination of groundwater forming (1970-1990) at the site adjacent to the NPP, where the storage facility of low- and medium-level radioactive waste is located, falls into the zone of influence. Interpretation of monitoring data allowed obtaining the migration parameters for predictive estimates. Modeling has shown that during the time of the LNPP-2 operation there is was no intake of contaminated water by the drainage system of the new power plant.

groundwater radioactive elements technogenic radionuclides radioactive contamination halo sorption half-life geomigration modeling
To Archive


  1. Groundwater contamination (tritium) at nuclear plants. Report Associated with Events. URL: (дата обращения 20.12.2021).
  2. Implementation of new nuclear power plant units, at the Paks site. URL: (дата обращения 20.12.2021).
  3. Jakimavičiūtė-Maselienė V., Cidzikienė V. Modelling of tritium transport in the underground water from hypothetical reactor at the new NPP site in Lithuania // Progress in Nuclear Energy. 2015. Vol. 80. P. 1-6. DOI: 10.1016/j.pnucene.2014.11.018
  4. Пашкевич М.А., Петрова Т.А. Создание системы производственного экологического мониторинга на предприятиях по добыче и транспортировке углеводородов Западной Сибири // Записки Горного института. 2016. Т. 221. С. 737-741.
  5. Golovina E.I., Grebneva A.V. Some Aspects of Groundwater Resources Management in Transboundary Areas // Journal of Ecological Engineering. 2021. Vol. 22. № 4. P. 106-118. DOI: 10.12911/22998993/134037
  6. Nureev, R.R., Pashkevich, M.A., Isakov, A.E. Assessment of the technogenic impact of the korkinsky coal mine // Proceedings Of The International Forum-Contest of Young Researchers,18-20 April 2018, St. Petersburg, Russia. Topical Issues of Rational Use of Natural Resources, 2019. P. 371-377.
  7. Ерзова В.А., Румынин В.Г., Судариков С.М. и др. О воздействии объектов северо-западного атомно-промышленного комплекса на загрязнение подземных вод (Ленинградская область) // Известия Томского политехнического университета. Инжиниринг георесурсов. 2021. Т. 332. № 9. С. 30-42. DOI: 10.18799/24131830/2021/9/3351
  8. Крышев И.И., Пахомов А.Ю., Брыкин С.Н. и др. Оценка и прогнозирование радиационно-экологического воздействия хранилищ радиоактивных отходов Ленинградского отделения филиала «Северо-западный территориальный округ» ФГУП «РосРАО» // Известия высших учебных заведений. Ядерная энергетика. 2012. № 3. С. 44-52.
  9. Rumynin V.G., Vladimirov K.V., Nikulenkov A.M. et al. The status and trends in radioactive contamination of groundwater at a LLW-ILW storage facility site near Sosnovy Bor (Leningrad region, Russia) // Journal of Environmental Radioactivity. 2021. Vol. 237. № 106707. DOI: 10.1016/j.jenvrad.2021.106707
  10. Нововоронежская АЭС: опыт использования данных объектного мониторинга состояния недр и математического моделирования для оценки воздействия на грунтовые и поверхностные воды. Атомная энергия. URL: (дата обращения 20.12.2021).
  11. Moench A.F. Flow to a well of finite diameter in a homogeneous, anisotropic water table aquifer // Water Resources Research. 1997. Vol. 33. Iss. 6. P. 1397-1407. DOI: 10.1029/97WR00651
  12. Neuman S.P. Analysis of pumping test data from anisotropic unconfined aquifers considering delayed gravity response // Water Resources Research. 1975. Vol. 11. Iss. 2. P. 329-345. DOI: 10.1029/WR011I002P00329
  13. Hantush M.S. Flow to wells in aquifers separated by a semipervious layer // Journal of Geophysical Research. 1967. Vol. 72. Iss. 6. P. 1709-1720. DOI: 10.1029/JZ072i006p01709
  14. Javandel I., Witherspoon P.A. Analytical solution of a partially penetrating well in a two-layer aquifer // Water Resources Research. 1983. Vol. 19. Iss. 2. P. 567-578. DOI: 10.1029/WR019I002P00567
  15. Cooper H.H., Bredehoeft J.D., Papadopulos I.S. Response of a finite diameter well to an instantaneous charge of water // Water Resources Research. 1967. Vol. 3. Iss. 1. P. 263-269. DOI: 10.1029/WR003i001p00263
  16. ANSDIMAT – software for analytical modelling of groundwater wells. URL: (дата обращения 20.12.2021).
  17. Das B.S., Kluitenberg G.J. Moment analysis to estimate degradation rate constants from leaching experiments // Soil Science Society of America Journal. 1996. Vol. 60. Iss. 6. P. 1724-1731. DOI: 10.2136/SSSAJ1996.03615995006000060017X
  18. Espinoza C., Valocchi A.J. Temporal moments analysis of transport in chemically heterogeneous porous media // Journal of Hydrologic Engineering. 1998. Vol. 3. Iss. 4. P. 276-284. DOI: 10.1061/(ASCE)1084-0699(1998)3:4(276)
  19. Goltz M., Huang J. Analytical Modeling of Solute Transport in Groundwater. New Jersey: John Wiley & Sons, 2017. 272 p. DOI: 10.1002/9781119300281
  20. Goltz M.N., Roberts P.V. Using the method of moments to analyze three-dimensional diffusion-limited solute transport from temporal and spatial perspectives // Water Resources Research. 1987. Vol. 23. Iss. 8. P. 1575-1585. DOI: 10.1029/WR023i008p01575
  21. Valocchi A.J. Validity of the local equilibrium assumption for modeling sorbing solute transport through homogenous soils // Water Resources Research. 1985. Vol. 21. Iss. 6. P. 808-820. DOI: 10.1029/WR021I006P00808
  22. Young D.F., Ball W.P. Column experimental design requirements for estimating model parameters from temporal moments under nonequilibrium conditions // Advanced Water Resources. 2000. Vol. 23. Iss. 5. P. 449-460. DOI: 10.1016/S0309-1708(99)00047-0
  23. Yu C., Warrick A.W., Conklin M.H. A moment method for analyzing breakthrough curves of step inputs // Water Resources Research. 1999. Vol. 35. Iss. 11. P. 3567-3572. DOI: 10.1029/2000WR900322
  24. Pang L., Goltz M., Close M. Application of the method of temporal moments to interpret solute transport with sorption and degradation // Journal of Contaminant Hydrology. 2003. Vol. 60. Iss. 1-2. P. 123-134. DOI: 10.1016/S0169-7722(02)00061-X
  25. Fioreze M., Mancuso M.A. MODFLOW and MODPATH for hydrodynamic simulation of porous media in horizontal subsurface flow constructed wetlands: A tool for design criteria // Ecological Engineering. 2019. Vol. 130. P. 45-52. DOI: 10.1016/j.ecoleng.2019.01.012
  26. Антонов В.В., Устюгов Д.Л. Проблемы создания постоянно действующих математических моделей крупных регионов // Записки Горного института. 2003. Т. 153. С. 115-116.
  27. Harbaugh A.W. MODFLOW-2005, the U.S. Geological Survey modular ground-water model – the Ground-Water Flow Process // Techniques and Methods. 2005. 253 р. DOI: 10.3133/tm6A16
  28. Hughes J.D., Russcher M.J., Langevin Ch.D. et al. The MODFLOW Application Programming Interface for simulation control and software interoperability // Environmental Modelling & Software. 2022. Vol. 148. № 105257. DOI: 10.1016/j.envsoft.2021.105257
  29. Pollock D.W. User guide for MODPATH version 7 – А particle-tracking model for MODFLOW // Open-File Report: U.S. Geological Survey. 2016. 35 p. DOI: 10.3133/ofr20161086
  30. Pietrzak D. Modeling migration of organic pollutants in groundwater – Review of available software // Environmental Modelling & Software. 2021. Vol. 144. № 105145. DOI: 10.1016/j.envsoft.2021.105145
  31. Li L., Boucher A., Caers J. SGEMS-UQ: An uncertainty quantification toolkit for SGEMS // Computers & Geosciences. 2014. Vol. 62. P. 12-24. DOI: 10.1016/j.cageo.2013.09.009
  32. Remy N., Boucher A., Wu J. Applied Geostatistics with SGeMS: A User's Guide. Cambridge: Cambridge University Press, 2009. 98 р. DOI: 10.1017/CBO9781139150019
  33. Dashko R.E., Lebedeva Y.A. Improving approaches to estimating hydrogeological investigations as a part of engineering survey in megacities: case study of St. Petersburg // Water Resources. 2017. Vol. 44. Iss. 7. P. 875-885. DOI: 10.1134/S009780781707003X
  34. Protosenya A.G., Lebedev M.O., Karasev M.A., Belyakov N.A. Geomechanics of low-subsidence construction during the development of underground space in large cities and megalopolises // Journal of Mechanical and Production Engineering Research and Development. 2019. Vol. 9. Iss. 5. P. 1005-1014. DOI: 10.24247/ijmperdoct201989
  35. Дашко Р.Э., Лохматиков Г.А. Верхнекотлинские глины Санкт-Петербургского региона как основание и среда уникальных сооружений: инженерно-геологический и геотехнический анализ // Записки Горного института. 2022. С. 1-11 (Online first). DOI: 10.31897/PMI.2022.13
  36. Румынин В.Г., Панкина Е.Б., Якушев М.Ф. и др. Оценка воздействия атомно-промышленного комплекса на подземные воды и смежные природные объекты (г. Сосновый Бор Ленинградской области). СПб: Изд-во Санкт-Петербургского университета, 2003. 248 c.
  37. ЕГАСМРО. URL: (дата обращения 20.12.2021).

Similar articles

Assessment of the role of the state in the management of mineral resources
2022 Vladimir S. Litvinenko, Evgenii I. Petrov, Daria V. Vasilevskaya, Aleksandr V. Yakovenko, Igor A. Naumov, Maksim A. Ratnikov
Application of the cybernetic approach to price-dependent demand response for underground mining enterprise electricity consumption
2022 Aleksandr V. Nikolaev, Stefan Vöth, Aleksey V. Kychkin
Uranium in man-made carbonates on the territory of Ufa
2023 Iskhak M. Farkhutdinov, Rustam R. Khayrullin, Bulat R. Soktoev, Anastasia N. Zlobina, Elena I. Chesalova, Anvar M. Farkhutdinov, Andrey V. Tkachev