Submit an Article
Become a reviewer
Research Article
Modern Trends in Hydrocarbon Resources Development

Predicting the permeability of the near-bottomhole zone during wave impact

Qi Chengzhi1
Mikhail А. Guzev2
Vladimir V. Poplygin3
Artem A. Kunitskikh4
  • 1 — Ph.D., Dr.Sci. Dean Beijing University of Civil Engineering and Architecture ▪ Orcid
  • 2 — Ph.D., Dr.Sci. Chief Researcher Perm National Research Polytechnic University ▪ Orcid
  • 3 — Ph.D. Dean Perm National Research Polytechnic University ▪ Orcid
  • 4 — Ph.D. Associate Professor Perm National Research Polytechnic University ▪ Orcid
Date submitted:
Date accepted:
Date published:


The research reveals that during selection of a method to increase oil recovery it is necessary to take into account rheological features of fluid movement through the formation, effect of capillary forces and heterogeneity of reservoir properties of the productive formation in thickness and along the bedding. Low-frequency wave impact, which is used to increase production in oil fields, is considered. At low-frequency impact new fractures appear and existing fractures in rocks increase in size. The greatest increase in porosity and permeability of rocks occurs at an impact frequency up to 10 Hz. Dynamics of oscillation amplitude during wave's movement in saturated porous medium is studied in the paper: essential attenuation of amplitude occurs at distance up to 1 m from borehole axis. With increase of frequency from 1 to 10 Hz the intensity of amplitude's attenuation decreases. The technology was tested on a well in Perm region (Russia). The actual permeability value was 50 % higher than the predicted value. According to the results of hydrodynamic investigations processing, it was noted that the greatest increase of permeability took place near the wellbore, while away from the wellbore axis permeability remained almost unchanged. In order to refine the mathematical model for prediction of wave impact on rock permeability it is necessary to take into account interconnection of pore space structure, change of adhesion layer, as well as to study transfer of particles during vibration.

permeability rock wave impact oscillation frequency oscillation amplitude enhanced oil recovery dilatation-wave impact reservoir
Go to volume 258


  1. Lei Zhang, Xufeng Wang, Jiyao Wang, Zhanbiao Yang. Mechanical characteristics and pore evolution of red sandstone under ultrasonic high-frequency vibration // AIP Advances. 2021. Vol. 11. Iss. 51. № 055202. DOI: 10.1063/5.0051640
  2. Cardoni A., Harkness P., Lucas M. Ultrasonic rock sampling using longitudinal-torsional vibrations // Ultrasonics. 2010. Vol. 50. Iss. 4-5. P. 447-452. DOI: 10.1016/j.ultras.2009.09.036
  3. Fernando P.K.S.C., Meng Zhang, Pei Z. Rotary ultrasonic machining of rocks: An experimental investigation // Advances in Mechanical Engineering. 2018. Vol. 10. Iss. 3. DOI: 10.1177/1687814018763178
  4. Wiercigroch M., Wojewoda J., Krivtsov A.M. Dynamics of ultrasonic percussive drilling of hard rocks // Journal of Sound and Vibration. 2005. Vol. 280. Iss. 3-5. P. 739-757. DOI: 10.1016/j.jsv.2003.12.045
  5. Ning Li, Ping Zhang, Yunsheng Chen, Swoboda G. Fatigue properties of cracked, saturated and frozen sandstone samples under cyclic loading // International Journal of Rock Mechanics and Mining Sciences. 2003. Vol. 40. Iss. 1. P. 145-150. DOI: 10.1016/S1365-1609(02)00111-9
  6. Fernando P.K.S.C., Pei Z.J., Meng Zhang. Mechanistic cutting force model for rotary ultrasonic machining of rocks // International Journal of Advanced Manufacturing Technology. 2020. Vol. 109. Iss. 1-2. P. 109-128. DOI: 10.1007/s00170-020-05624-z
  7. Da-jun Zhao, Peng Yuan. Research on the Influence Rule of Ultrasonic Vibration Time on Granite Damage // Journal of Mining Science. 2018. Vol. 54. Iss. 5. P. 751-762. DOI: 10.1134/S1062739118054856
  8. Kozhevnikov E.V., Turbakov M.S., Riabokon E.P., Poplygin V.V. Effect of Effective Pressure on the Permeability of Rocks Based on Well Testing Results // Energies. 2021. Vol. 14. Iss. 8. № 2306. DOI: 10.3390/en14082306
  9. Kozhevnikov E., Riabokon E., Turbakov M.A. Model of Reservoir Permeability Evolution during Oil Production // Energies. 2021. Vol. 14. Iss. 9. № 2695. DOI: 10.3390/en14092695
  10. Momeni A.A., Karakus M., Khanlari G.R., Heidari M. Effects of cyclic loading on the mechanical properties of a granite // International Journal of Rock Mechanics & Mining Sciences. 2015. Vol. 77. P. 89-96. DOI: 10.1016/j.ijrmms.2015.03.029
  11. Yi Liu, Feng Dai, Lu Dong et al. Experimental Investigation on the Fatigue Mechanical Properties of Intermittently Jointed Rock Models Under Cyclic Uniaxial Compression with Different Loading Parameters // Rock Mechanics and Rock Engineering. 2018. Vol. 51. Iss. 1. P. 47-68. DOI: 10.1007/s00603-017-1327-7
  12. Bagde M.N., Petroš V. Fatigue properties of intact sandstone samples subjected to dynamic uniaxial cyclical loading // International Journal of Rock Mechanics and Mining Sciences. 2005. Vol. 42. Iss. 2. P. 237-250. DOI: 10.1016/j.ijrmms.2004.08.008
  13. Lin-jian Ma, Xin-yu Liu, Ming-yang Wang et al. Experimental investigation of the mechanical properties of rock salt under triaxial cyclic loading // International Journal of Rock Mechanics and Mining Sciences. 2013. Vol. 62. P. 34-41. DOI: 10.1016/j.ijrmms.2013.04.003
  14. Mingming He, Ning Li, Yunsheng Chen, Caihui Zhu. Strength and Fatigue Properties of Sandstone under Dynamic Cyclic Loading // Shock and Vibration. 2016. Vol. 2016. № 9458582. DOI: 10.1155/2016/9458582
  15. Xiao X., Pan Y., Lu X., Yang X. Mechanism of methane permeability enhance through ultrasonic irradiating on low permeable coal seam // Chinese Journal of Geophysics. 2013. Vol. 56. P. 1726-1733. DOI: 10.6038/cjg20130530
  16. Yin Songyu, Zhao Dajun, Zhai Guobing. Investigation into the characteristics of rock damage caused by ultrasonic vibration // International Journal of Rock Mechanics and Mining Sciences. 2016. Vol. 84. P. 159-164. DOI: 10.1016/j.ijrmms.2015.12.020
  17. Dajun Zhao, Shulei Zhang, Meiyan Wang. Microcrack Growth Properties of Granite under Ultrasonic High-Frequency Excitation // Advances in Civil Engineering. 2019. № 3069029. DOI: 10.1155/2019/3069029
  18. Guzev M.A., Kozhevnikov E.V., Turbakov M.S. et al. Experimental Investigation of the Change of Elastic Moduli of Clastic Rocks under Nonlinear Loading // International Journal of Engineering. 2021. Vol. 34. Iss. 3. P. 750-755. DOI: 10.5829/ije.2021.34.03c.21
  19. Guzev M., Kozhevnikov E., Turbakov M. et al. Experimental Studies of the Influence of Dynamic Loading on the Elastic Properties of Sandstone // Energies. 2020. Vol. 13. Iss. 23. № 6195. DOI: 10.3390/en13236195
  20. Guzev M., Riabokon E., Turbakov M. et al. Modelling of the Dynamic Young’s Modulus of a Sedimentary Rock Subjected to Nonstationary Loading // Energies. 2020. Vol. 13. Iss. 23. № 6461. DOI: 10.3390/en13236461
  21. Marfin E., Gavrilov A., Abdrashitov A., Kadyirov A. Pressure build-up test under elastic-wave action on the reservoir // CMMASS 21st International Conference, 24-31 May 2019, Crimea, Russian Federation. Computational Mechanics and Modern Applied Software Systems. 2019. Vol. 2181. № 020018. P. 020018-1-020018-7. DOI: 10.1063/1.5135678
  22. Xiaodong Han, Liming Zheng, Cunliang Chen, Hongfu Shi. Velocity and attenuation of elastic wave in a developed layer with the initial inner percolation in the pores // Journal of Petroleum Exploration and Production Technology. 2018. Vol. 8. DOI: 10.1007/s13202-018-0468-x
  23. Liming Zheng, Hao Wang. Numerical study on the variation of single phase flow in three-dimensional layer under low-frequency artificial vibration of seismic production technique // Energy Sources. Part A: Recovery, Utilization, and Environmental Effects, 2020. DOI: 10.1080/15567036.2020.1840668
  24. Louhenapessy S.C., Ariadji T. The effect of type waves on vibroseismic implementation of changes properties of rock, oil viscosity, oil compound composition, and enhanced oil recovery // Petroleum Research. 2020. Vol. 5. Iss. 4. P. 304-314. DOI: 10.1016/j.ptlrs.2020.05.001
  25. Ariadji T. Effect of Vibration on Rock and Fluid Properties: On Seeking the Vibroseismic Technology Mechanisms // SPE Asia Pacific Oil and Gas Conference and Exhibition, 5-7 April 2005, Jakarta, Indonesia. Society of Petroleum Engineers, 2005. P. 161-168. DOI: 10.2118/93112-ms
  26. Liming Zheng, Chaoxiang Pu, Li Y.-J. et al. Biot's consolidation with variables for influence of low-frequency vibration stimulation on radial flow in low-permeability developed reservoir // Chinese Journal of Geotechnical Engineering. 2017. Vol. 39. Iss. 4. P. 752-758. DOI: 10.11779/CJGE201704022
  27. Liming Zheng, Pu C., Jiaxiang Xu et al. Modified model of porosity variation in seepage fluid-saturated porous media under elastic wave // Journal of Petroleum Exploration and Production Technology. 2016. Vol. 6. Iss. 4. P. 569-575. DOI: 10.1007/s13202-015-0217-3
  28. Li S.Q., Yan T., Li W., Bi F.Q. Modeling of vibration response of rock by harmonic impact // Journal of Natural Gas Science and Engineering. 2015. Vol. 23. P. 90-96. DOI: 10.1016/j.jngse.2015.01.025
  29. Shedid S.A. An ultrasonic irradiation technique for treatment of asphaltene deposition // Journal of Petroleum Science and Engineering. 2004. Vol. 42. Iss. 1. P. 57-70. DOI: 10.1016/j.petrol.2003.11.001
  30. Abaa K., Ityokumbul M.T., Adewumi M. Effect of Acoustic Stimulationon Aqueous Phase Trappingin Low-Permeability Sandstones // Journal of Energy Resources Technology, Transactions of the ASME. 2017. Vol. 139. Iss. 61. № 062905. DOI: 10.1115/1.4037156
  31. Chun Huh. Improved Oil Recovery by Seismic Vibration: A Preliminary Assessment of Possible Mechanisms // SPE 1st International Oil Conference and Exhibition in Mexico, 31 August – 2 September 2006, Cancun, Mexico. Society of Petroleum Engineers, 2006. P. 358-373. DOI: 10.2118/103870-ms
  32. Fasfiev B.R., Marfin E.A., Khusnullina A.А. The Change in the Temperature Dependence of the Viscosity of Oil Under Ultrasonic Action // European Association of Geoscientists & Engineers 20th Conference on Oil and Gas Geological Exploration and Development – Geomodel 2018, 10-14 September 2018, Gelendzhik, Russian Federation. 2018. P. 1-5. DOI: 10.3997/2214-4609.201802359
  33. Mardegalyamov M.M., Marfin E.A., Vetoshko R.A. Change in Permeability of a Porous Medium at Ultrasonic Action // EAGE 8th International conference and exhibition – Innovations in Geosciences-Time for Breakthrough, 9-12 April 2018, Saint Petersburg, Russian Federation. European Association of Geoscientists & Engineers, 2018. P. 1-5. DOI: 10.3997/2214-4609.201800258
  34. Elkhoury J.E., Niemeijer A.R., Brodsky E.E., Marone C. Laboratory observations of permeability enhancement by fluid pressure oscillation of in situ fractured // Journal of Geophysical Research. 2011. Vol. 116. P. 2-16. DOI: 10.1029/2010JB007759
  35. Жуковский Н.Е. О гидравлическом ударе в водопроводных трубах. М.-Л.: Государственное изд-во технико-теоретической литературы, 1949. 105 с.

Similar articles

Development of technological solutions for reliable killing of wells by temporarily blocking a productive formation under ALRP conditions (on the example of the Cenomanian gas deposits)
2022 Ramiz А. Gasumov, Yulia S. Minchenko, Eldar R. Gasumov
Drilling of deep and ultra-deep wells for prospecting and exploration of new raw mineral fields
2022 Mikhail V. Dvoynikov, Dmitrii I. Sidorkin, Sergei L. Yurtaev, Evgenii I. Grokhotov, Dmitrii S. Ulyanov
Renovation method of restoring well productivity using wavefields
2022 Natalya V. Shatalova, Timergalei K. Apasov, Aleksandr V. Shatalov, Boris V. Grigoriev