Submit an Article
Become a reviewer
Mining

Methodology of modeling nonlinear geomechanical processes in blocky and layered rock masses on models made of equivalent materials

Authors:
Boris Yu. Zuev
  • канд. техн. наук Head of Laboratory Saint Petersburg Mining University ▪ Orcid ▪ Scopus
Date submitted:
2021-03-31
Date accepted:
2021-09-29
Date published:
2021-09-29

Abstract

The research purpose is to develop a methodology that increases the reliability of reproduction and research on models made of equivalent materials of complex nonlinear processes of deformation and destruction of structured rock masses under the influence of underground mining operations to provide a more accurate prediction of the occurrence of dangerous phenomena and assessment of their consequences. New approaches to similarity criterion based on the fundamental laws of thermodynamics; new types of equivalent materials that meet these criteria; systems for the formation of various initial and boundary conditions regulated by specially developed computer programs; new technical means for more reliable determination of stresses in models; new methods for solving inverse geomechanical problems in the absence of the necessary initial field data have been developed. Using the developed methodology, a number of complex nonlinear problems have been solved related to estimates of the oscillatory nature of changes in the bearing pressure during dynamic roof collapse processes; ranges of changes in the frequency of processes during deformation and destruction of rock mass elements, ranges of changes in their accelerations; parameters of shifts with a violation of the continuity of the rock mass under the influence of mining: secant cracks, delaminations, gaping voids, accounting for which is necessary to assess the danger of the formation of continuous water supply canals in the water-protection layer.

Keywords:
similarity criterion energy balance equivalent materials initial and boundary conditions physical and geophysical fields patterns of deformation and destruction of structured rock masses
10.31897/PMI.2021.4.7
Go to volume 250

Similar articles

Study of the dynamics for gas accumulation in the annulus of production wells
2021 Kamil R. Urazakov, Viktor V. Belozerov, Bulat M. Latypov
Allocation of a deep-lying brine aquifer in the rocks of a chemogenic section based on the data of geophysical well logging and 2D seismic exploration
2021 Natalia A. Danileva, Sergei M. Danilev, Natalia V. Bolshakova
Justification of a comprehensive technology for preventing the formation of asphalt-resin-paraffin deposits during the production of highlyparaffinic oil by electric submersible pumps from multiformation deposits
2021 Mikhail K. Rogachev, Aleksandr N. Aleksandrov