Submit an Article
Become a reviewer
O. A. Dubovikov
O. A. Dubovikov
Saint-Petersburg Mining University
Russia
Saint-Petersburg Mining University
Russia
0
Total cited
0
Hirsch index

Co-authors

Articles

  • Date submitted
    2016-10-07
  • Date published
    2016-04-01

Directions and prospects of using low grade process fuel to produce alumina

Power consumption across the globe is constantly increasing for a variety of reasons: growing population, industrialization and fast economic growth. The most widespread gaseous fuel – natural gas – has the low production cost. It is 2-3 times cheaper than liquid fuel production and 6-12 times cheaper than coal production. When natural gas is transported to distances from 1.5 to 2.5 thousand km by the pipeline, its cost with account of transportation is 1.5-2 times less than the cost of coal and the fuel storage facilities are not needed. Plants powered by natural gas have the higher efficiency as compared to the plants operating on other types of fuel. They are easier and cheaper to maintain and are relatively simple in automation, thus enhancing safety and improving the production process flow, do not require complicated fuel feeding or ash handling systems. Gas is combusted with a minimum amount of polluting emissions, which adds to better sanitary conditions and environment protection. But due to depletion of major energy resources many experts see the future of the global energy industry in opportunities associated with the use of solid energy carriers. From the environmental perspective solid fuel gasification is a preferred technology. The use of synthetic gas was first offered and then put to mass scale by English mechanical engineer William Murdoch. He discovered a possibility to use gas for illumination by destructive distillation of bituminous coal. After invention of the gas burner by Robert Bunsen, the illumination gas began to be used as a household fuel. The invention of an industrial gas generator by Siemens brothers made it possible to produce a cheaper generator gas which became a fuel for industrial furnaces. As the calorific value of generator gas produced through gasification is relatively low compared to natural gas, the Mining University studied possibilities to use different types of low grade process fuel at the Russian alumina refineries as an alternative to natural gas, access to which is restricted for some of the regions.

Read more
O. A. Dubovikov, V. N. Brichkin (2016) Directions and prospects of using low grade process fuel to produce alumina. Journal of Mining Institute. Vol 220. p. 587. DOI: 10.18454/pmi.2016.4.587
  • Date submitted
    2016-10-12
  • Date published
    2015-05-01

Scientific heritage of academician Nikolay Semenovich Kurnakov

Once N.V.Lipin, a professor of mathematics at the Leningrad Mining Institute, told N.S.Kurnakov that M.V.Lomonosov had complained about his lack of familiarity with mathematics. The outstanding scientist replied «That’s absolutely true, and I have already told you about it: we all need mathematics, and the more chemistry develops, the more it needs a mathematical justification». According to one scenario of the international nongovernmental organization, the Club of Rome, there will be a three-fold decrease in the world’s raw materials resources and multifold volume reduction in industrial production by the middle of the 21st century. Another scenario claims that raw materials will reduce only by one third, and the volume of industrial production will remain at the level of the beginning of the century. Not only the first scenario, but also the second one forecasts industrial stagnation. It is unacceptable for dynamic and sustainable development of the technological civilization. Intensively developing economies in China, India, Brazil and Russia defy the forecast of the Club of Rome, as it has not taken into account the possibility of scientific and technological progress in reducing energy consumption and using alternative sources, as well as the increased technological potential of the humanity. Due to depletion of the main sources of energy (oil and gas), many experts link the future of the world’s power industry with the possible use of solid energy resources. From the environmental point of view solid fuel gasification technology is the most preferable. As the calorific value of producer gas is relatively low in comparison with natural gas, some research of possible use of producer gas (as an alternative to natural gas which is available not in all regions) at Russian industrial enterprises has been conducted.

Read more
O. A. Dubovikov (2015) Scientific heritage of academician Nikolay Semenovich Kurnakov. Journal of Mining Institute. Vol 215. p. 65.
  • Date submitted
    2016-10-14
  • Date published
    2014-12-22

Preliminary preparation of oil for primary processing

Oil supplied for primary processing always undergoes preliminary preparation, the purpose of which is to eliminate the harmful effect of water and salt contained in the oil. It is thought that corrosion of the equipment is connected mainly with chlorides of magnesium and calcium, which are subjected to hydrolysis with the formation of hydrochloric acid. Under the influence of hydrochloric acid the destruction (corrosion) of metal equipment at technological plants occurs (especially refrigerating-condensing and heatexchange equipment, furnaces of rectification units etc.).  The authors of the article, on the basis of thermodynamic calculations, provide their point of view on this process and give a methodology by which the process of preliminary oil dehydration and desalting can be controlled.  The thermodynamic calculations executed for standard conditions on the basis of refer-enced data confirm a high probability of chemical interaction of iron with hydrogen ions, hy-drogen sulphide and especially with carbonic acid. This testifies to high activity of the carbon dioxide dissolved in water and the impossibility of hydrolysis of ions of magnesium, calcium and iron. The calculations show that only the hydrolysis of magnesium chloride is possible tak-ing into account the ionic composition of the water phase in the oil. It should be noted that the presence of ions of chlorine shifts the iron potential in a nega-tive direction and increases the speed of corrosion of petrochemical equipment. The solution of this problem is in the development of modern methods of crude oil dehydration and desalting. It is also, however, in an intensification of the processes of mixing water-oil emulsions with wash-ing water by using various physical fields (for example, ultrasound) and creating new effective mixing devices on the basis of them.

Read more
N. K. Kondrasheva, O. A. Dubovikov, I. I. Ivanov, O. V. Zyr'yanova (2014) Preliminary preparation of oil for primary processing. Journal of Mining Institute. Vol 210. p. 21.
  • Date submitted
    2016-11-13
  • Date published
    2016-05-01

Processing of low-quality bauxite feedstock by thermochemistry-Bayer method

The modern production of aluminum which by its global output ranks first among the non-ferrous metals includes three main stages: ore extraction, its processing into alumina and, finally, the production of primary aluminum. Alumina production from bauxites,  being the  primary raw material in the  alumina industry,  is based  on two main methods: the Bayer method and the sintering method developed in Russia under the lead of an academician Nikolay Semenovich Kurnakov. Alumina production by the Bayer’s method is more cost effective,  but  has  higher  requirements to the  quality of the bauxite feedstock.  A great deal  of research has  been carried  out on low quality bauxites focusing firstly on finding ways to enrich the feedstock, secondly on improving the combined sequential Bayer-sintering method and thirdly on developing new hydrometallurgical ways for bauxites processing. Mechanical methods of bauxite enrichment have not yet brought any positive outcome, and a development of new hydrometallurgical high alkaline  autoclave process  faced  significant hardware  difficulties not addressed so far. For efficient processing of such low quality bauxite feedstock it is suggested to use a universal thermochemistry-Bayer method, which was developed in St. Petersburg Mining University under  the lead  of  Nikolay Ivanovich Eremin, allows to process different substandard bauxite feedstock and has a competitive costing as compared to the sintering method and combined methods. The main stages of thermochemistry-Bayer method are thermal activation of feedstock, its further desiliconization with the alkaline solution and leaching of the resultant bauxite product  under Bayer’s method. Despite high energy consumption at  the baking stage,  it  allows to condition the  low quality bauxite feedstock by neutralizing a variety of technologically harmful impurities such as organic matter, sulfide sulfur, carbonates, and at the same time to remove crystalline hydrate and free water. Subsequent desiliconization of thermally activated bauxite with an alkaline solution allows to regrade  it  from low quality bauxites to feedstock suitable for processing by the Bayer  method.

Read more
O. A. Dubovikov, E. E. Yaskelyainen (2016) Processing of low-quality bauxite feedstock by thermochemistry-Bayer method. Journal of Mining Institute. Vol 221. p. 668. DOI: 10.18454/pmi.2016.5.668