ИССЛЕДОВАНИЕ ВЛИЯНИЯ ТЕМПЕРАТУРЫ НА СПОСОБНОСТЬ МЕТАЛЛОВ НАКАПЛИВАТЬ ЭНЕРГИЮ ПРИ ИХ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ

В. Ф. Безъязычный, М. Счерек, М. Л. Первов, М. В. Тимофеев, М. А. Прокофьев

Аннотация


Предметом исследования является поверхностный слой высоконагруженных деталей, узлов трения горных машин и оборудования. В статье приведен теоретический анализ факторов, определяющих способность материала поверхностного слоя деталей накапливать энергию в процессе пластической деформации. Высказано предположение об активационном характере накопления металлами энергии.

На основе теории диффузии показано, что подвижность атомов, равно как и накопленная энергия, определяются отношением температуры испытания к температуре плавления.


Ключевые слова


детали машин; поверхностный слой; накопленная энергия; температура; степень деформации; предел прочности

Полный текст:

PDF PDF (English)

Литература


Karavaiko G.I., Rossi Dzh., Agate A., Grudev S., Avakyan Z.A. Biogeotechnology of metals. Tsentr mezhdunarodnykh proektov GKNT. Moscow, 1989, p. 75 (in Russian).

Levenets O.O., Khainasova T.S., Balykov A.A., Pozolotina L.A. Bioleaching of sulfide cobalt-copper-nickel ore. Gornyi informatsionno-analiticheskii byulleten'. Spetsial'nyi vypusk N 63 «Kamchatka-2». 2015. N 11, p. 291-296 (in Russian).

Khainasova T.S., Kungurova V.E., Pozolotina L.A., Balykov A.A., Levenets O.O. Bioleaching of sulphidic cobalt-copper-nickel ore from the Shanuch deposit with various cultures of native microorganisms. Gornyi informatsionno-analiticheskii byulleten'. Spetsial'nyi vypusk N 63 «Kamchatka-2». 2015. N 11, р. 297-304 (in Russian).

Khainasova T.S., Levenets O.O., Trukhin Yu.P. Application of microbial immobilization in bioleaching. Gornyi informatsionno-analiticheskii byulleten'. Spetsial'nyi vypusk N 31 «Kamchatka-3». 2016. N 11, p. 235-246 (in Russian).

Khomchenkova A.S. Study of the effect of various concentrations of heavy metal salts on the growth of acidophilic chemolithotrophic microorganisms. Gornyi informatsionno-analiticheskii byulleten'. Spetsial'nyi vypusk N 31 «Kamchatka-3». 2016. N 11, p. 217-222 (in Russian).

Varela P., Levica G., Rivera F., Jerez C.A. An immunological strategy to monitor in situ the phosphate starvation state in Thiobacillus ferrooxidans. Applied and environmental microbiology. 1998. Vol. 64. N 12, p. 4990-4993.

Bryan C.G., Joulian C., Spolaore P., Challan-Belval S., Achbouni H.E., Morin D.H.R., P.D'Hugues. Adaptation and evolution of microbial consortia in a stirred tank reactor bioleaching system: indigenous population versus a defined consortium. Advanced materials research. 2009. Vol. 71-73, p. 79-82. DOI:10.4028/www.scientific.net/AMR.71-73.79

Bosecker K. Bioleaching: metal solubilization by microorganisms. FEMS Microbiology Reviews. 1997. Vol. 20, p. 591-604. DOI: 10.1111/j.1574-6976.1997.tb00340.x

Brandl H. Microbial leaching of metals. Chapter 8, 2008, р. 192-217. URL:http://www.wiley-vch.de/books/biotech/

pdf/v10_bran.pdf (date of access 20.01.2018).

Qureshi N., Annous B.A., Thaddeus E.C. et al. Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates. Microbial cell factories. 2005. Vol. 4. N 24, p. 1-21. DOI:10.1186/1475-2859-4-24

Das T. Factors affecting bioleaching kinetics of sulfide ores using acidophilic microorganisms. Biometals. 1999. Vol. 12, p. 1-10.

Doelle H.W., Rokem J.S., Berovic M. Biotechnology – Vol.X: fundamentals in biotechnology. Encyclopedia of Life Support Systems Publications. 2009, p. 538.

Savic D.S., Veljkovic V.B., Lazic M.L. et al. Effects of oxygen transfer rate on ferrous iron oxidation Thiobacillus ferrooxidans. Ensime and microbial technology. 1998. Vol. 23, p. 427-431. DOI: 10.1016/S0141-0229(98)00071-4

Gentina J.C., Acevedo F. Application of bioleaching to copper mining in Chile. Electronic Journal of Biotechnology. Special Issue on Process Biotechnology. 2013. Vol. 16.N 3, p.725-731. DOI: 10.2225/vol16-issue3-fulltext-12

Jaantinen T. Biooxidation and bioleaching of arsenic-containing and refractory gold concentrates. Master of Thesis. Tampere University of Technology. Finland. 4th of May 2011, p. 100.

Johnson D.B. Minireview. Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiology and ecology. 1998. Vol. 27, p. 307-317. DOI: 10.1111/j.1574-6941.1998.tb00547.x

Maluckov B.S. The catalytic role of Acidithiobacillus ferrooxidans for metals extraction from mining – Metallurgical Resource. Biodiversity International Journal. 2017. Vol. 1 (3), p. 1-12. DOI: 10.15406/bij.2017.01.00017

Natarajan K.A. Metals Biotechnology. Lecture 14. Heap bioleaching technology for nickel. NPTEL Web Course, 2008,

p. 1-8. URL: https://nptel.ac.in/courses/113108055/module2/lecture14.pdf (date of access 20.01.2018).

Nemati M., Webb C. Nemati M. Inhibition effect of ferric iron on the kinetics of ferrous iron. Biotechnology letters. 1998. Vol. 20. N 9, р. 873-877. DOI: 10.1023/A:1005319710861Issn

Nemati M., Lowenadler J., Harrison S.T.L. Particle size effects in bioleaching of pyrite by acidophilic thermophile Sulfolobus metallicus (BC). Applied microbiology and biotechnology. 2000. Vol. 53, p. 173-179. DOI: 10.1007/s002530050005

Neale J.W. Mintek. Integrated piloting of a thermophilic nickel-copper bioleaching process. 2009. URL: http://

www.powershow.com/view/229d4d-NWNkN/Integrated_piloting_of_a_thermophilic_nickelcopper_bioleaching_process_powerpoint_ppt_

presentation (date of access 20.01.2018).

Neale J.W., Gericke M., Ramcharan K. The application of bioleaching to base metal sulfides in Southern Africa: prospects and opportunities. 6th Southern African Base Metals Conference. The Southern African Institute of Mining and Metallurgy, 2011, p. 367-388.

Olson G.J., Brierley J.A., Brierley C.L. Bioleaching review part B: progress in bioleaching: applications of microbial processes by the minerals industries. Applied microbiology and biotechnology. 2003. Vol. 63, р. 249-257. DOI 10.1007/s00253-003-1404-6

Rawlings D.E., Dew D., Plessis C. Biomineralization of metal-containing ores and concentrates. Review. Trends in biotechnology. 2003. Vol. 21. N 1, p. 38-44.

Rawlings D.E. Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microbial cell factories. 2005. Vol. 4. N 13, p. 1-15. DOI: 10.1186/1475-2859-4-13

Rawlings D.E., Johnson D.B. The microbiology of biomining: development and optimization of mineral-oxidizing microbial consortia. Microbiology. 2007. Vol. 153, p. 315-324. DOI: 10.1099/mic.0.2006/001206-0

Spencer A. Influence of bacterial culture selection on the operation selection of a plant treating refractory gold ore. International journal of mineral processing. 2001. Vol. 62, p. 217-229. DOI: 10.1016/S0301-7516(00)00054-5

Watling H.R. Review of biohydrometallurgical metals extraction from polymetallic mineral resources. Minerals. 2015. Vol. 5. N 1, р. 1-60. DOI:10.3390/min5010001




DOI: http://dx.doi.org/10.31897/pmi.2019.1.55

Ссылки

  • На текущий момент ссылки отсутствуют.


Лицензия Creative Commons
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.