Nitrification of high ammonia concentrations in membrane bioreactors – microbiological aspect

Anna Raszka, Joanna Surmacz-Górska

Аннотация


Wastewater treatment based on activated sludge is known to be one of the most effective and popular wastewater purification methods. Activated sludge, as a mixture of microorganisms, is an excellent research material for both microbiology and technology, resulting in finding a method to effectively utilize different chemicals. This research is focused on microbial community temporal changes in membrane bioreactors’ flora treating wastes containing a high level of ammonia nitrogen. Knowledge about species composition and its variability over time according to the environmental factors is important from both microbial ecology and technology points of view. The aim of this study was to compare activated sludge community composition at two different sludge ages. The analysis was performed to estimate the abundance of the main species and the structure of the bacterial community pointed mainly at the ammonia and nitrite-oxidizing bacteria. The aim of the short report is mainly to familiarize the reader with problems of increasing load of nitrogen compounds resulting from different anthropogenic activities. It is obvious that the protection of our water resources is of major importance on the global scale. 


Полный текст:

PDF (English)

Литература


Andreadakis, A.D.: Physical and chemical properties of activated sludge flocs. Wat. Res. 27(12), 1701-1714 (1993).

Cicek N., Macomber J., Davel J., Suidan M. T., Audic J., Genestet P.: Effect of solids retention time on the performance and biological characteristics of a membrane bioreactor. Wat. Sci. and Tech. 43/11, 43–50 (2001).

Choi, E., Eum, Y., Gil, K., Oa, S.: High strenght nitrogen removal from nightsoil and piggery wastes. Wat. Sci. Technol. 49/5-6, 97-104 (2004).

Engelhardt N., Firk W., Warnken W.: Integration of membrane filtration into the activated sludge process in municipal wastewater treatment. Wat. Sci. and Tech. 38/4 – 5, 429 – 436 (1998).

Fan X.J., Urbain V., Qian Y., Manem J.: Nitrification and mass balance with a membrane bioreactor for municipal wastewater treatment. Wat. Sci. and Tech. 34/1 – 2, 129 – 136 (1996).

Fan X.J., Urbain V., Qian Y., Manem J., Ng W.J., Ong S.L.: Nitrification in a membrane bioreactor (MBR) for wastewater treatment. Wat. Sci. and Tech. 42/3 – 4, 289 – 295 (2000).

Fux, C.: Biological nitrogen elimination of ammonium-rich sludge digester liquids. Doctoral Thesis, Swiss Federal Institute of Technology (2003).

Gernaey, K., Verschuere, L., Luyten, L., Verstraete, W.: Fast and sensitive acute toxicity detection with as enrichment nitrifying culture. Wat. Res. 69 (6), 1163-1169 (1997).

Ghyoot W., Vandaele S., Verstraete W. Nitrogen removal from sludge reject water with a membrane – assisted bioreactor. Wat. Res. 33/1, 23 – 32 (1999).

Griffiths, B.S.: The effect of protozoa grazing on nitrification-implications from the application of organic wastes applied to siols. In: Hansen, A.A., Henriksen, K., editors. Nitrogen in Organic Wastes Applied to Soils. London: Academic Press, 37-46 (1989).

Gűnder B, Krauth K. Replacement of secondary clarification by membrane separation – results with tubular, plate and hollow fibre modules. Wat. Sci. and Tech. 40/4 – 5, 311 – 320 (1999).

Hao, X., Martinez, J.: Removing nitrate and ammonium from drainage water by simulation of natural biological processess. Wat. Res. 32/3, 936-943 (1998).

Kishino H., Ishida H., Iwabu H., Nakano I.: Domestic wastewaters reuse using a submerged membrane bioreactor. Desalination 106, 115 – 119 (1996).

Lee, N.M., Welander, T.: Influence of predators on nitrification in anaerobic biofilm process. Wat. Sci. Technol. 29/7, 335-63 (1994).

Manoharan, R., Liptak, S., Parkinson, P., Mavinic, D.: Denitrification of a high ammonia leachate using an external carbon source. Environ. Tech. Letters 10, 701-716 (1989).

Martinez, J.: A soil treatment process of pig slurry with subsequent denitrification of drainage water. J. Agric. Engng. Res. 66/1, 51-62 (1997).

Morgan, J.W., Forster, C.F., Evison, L.: A comparative study of the nature of biopolymers extracted from anaerobic and activated sludges. Wat. Res. 24(6), 743-750 (1990).

Resink, J. H., Rulkens, W. H.: Using metazoan to reduce sludge production. Wat. Sci. Technol. 36/11, 171-179 (1997).

Rosenberger, S., Kraume, M.: Filterability of activated sludge in membrane bioreactors Desalination 146, 373-379 (2002).

Schmidt, I., Sliekers, O., Schmid, M. Bock, E., Fuerst, J., Gijs Kuenen, J., .Jetten, M., Strous, M.: New concepts of microbial treatment processes for the nitrogen removal in wastewater. Microbiology Reviews 27, 481-492 (2003).

Sundermeyer, H., Bock, E.: Energy metabolism of autotrophically and heterotrophically grown cells of Nitrobacter winogradskyi. Arch.Microbiol. 130, 250-254 (1981).


Ссылки

  • На текущий момент ссылки отсутствуют.


Лицензия Creative Commons
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.