Production aspects of ductility minimum emperature dmt phenomenon in as cast CuNi25 alloy

R. Nowosielski, P. Sakiewicz, M. Lutyński


The article contains an overview of ductility minimum temperature (DMT) phenomenon in single-phase copper nickel alloy. The influence of this phenomenon on ecological and economical aspects of production has been presented. Authors characterized behavior of these materials during high temperature tensile tests and also described potential reasons of this effect. High temperature ductility tests have proven a relation between microstructure, strain rates and scale of ductility minimum temperature phenomenon. 

Полный текст:

PDF (English)


F.N. Rhines, P.J. Wray, Trans. AMS 54 (1961) 118.

J.P. Chubb, J. Bilingham, Metals Tech. (1978), 100.

S.A. Gavin, Met. Tech. 11 (1979) 397-401.

R. Nowosielski, Mechanika (135), Wydaw. Pol. Sl., Gliwice, 2000 (in Polish).

W. Ozgowicz, Proceedings of the 10th Int. Science Conference on AMME’01, Gliwice, 2001, p.411.

Z. Mohamed, Mater. Sci. Eng. (2001).

E.M. Taleff, JOM (1999) 33.

S.A. Brown, K.S. Kumar, J. Mater. Res. 8 (1993) 1763.

W.C. Porr, Dissert. Abst. Int. 8 (1993) 58.

A.S. Wagh, L.N. Ezegnunam, Scripta Metal. 18 (1994) 933.

A. Muto, S. Goto, M. Tagami, S. Aso, J. Jpn. Inst. Met. 58 (1994) 1461.

L.W. Cepeda, J.M. Rodriguez-Ibabe, J.J. Urcola, Zat. Metall. 11 (1992) 801.

A. Darsouni, B. Bauzabata, F. Moutlaillet, J. Physique 5 (7) (1995) 347.

E.P. Georg, D.P. Pope Sklenicka, V Conf. Proc.Clean Steel Technology, Illinois, 2-5 November, 1992, p.17.

H. Yagamata, O. Izumi, J. Jpn. Inst. Met. 58 (1978) 146.

C. Ouchi, K. Matsumoto, Trans. ISIJ 22 (1982) 181.

H.J. Frost and M.F. Ashby, Deformation – Mechanism Maps, Pergamon Press, 1989.

R. Nowosielski, P. Sakiewicz, P. Gramatyka, Journal of Materials Processing Technology 162-163 (2005) 379-384.

F. Inoko, T. Okada, T. Nishimura and M. Ohomori, Interface SCIENCE 7, 131-140 (1999).

Tadao Watanabe, Sadahiro Tsurekawa, Materials Science and Engineering A 387-389 (2004) 447-455.

W. Briickner, V. Weihnacht, J. Appl. Phys. 7 (85) (1999).

T. Watanabe, S. Tsurekawa, Materials Science and Engineering A 387-389 (2004) 447-455.

T. Watanabe, Res. Mechanica 11 (1) (1984) 47-84.

B. Druyanov , I. Roman, Mechanics of Materials 30 (1998) 31-40.

D.R. Wilson,1972,. Structure of Liquid Metals and Alloys. Wiley, New York.

R. Krishnamurthy, D.J. Srolovitz, Acta Materialia 52 (2004) 3761-3780.

J.H. Zhu, C.T. Liu, Intermetallics 10 (2002) 309-316.

F. Inoko, T. Okada, T. Nishimura and M. Ohomori, Interface Science 7, 131-140 (1999).

A. Mwembela, E.V. Konopleva, H.J. McQueen, Scripta Metall. Mater. 37 (1997) 1789–1795.

M.E. Kassner, N.Q. Nguyen, G.A. Henshall, H.J. McQueen, Mater, Sci. Eng. A132 (1991) 97-105.

H.J. McQueen, Defects, Fracture and Fatigue, Marinus Nijhoff Pub., The Hague, 1983, p.459-471 (Mont. Gabriel, May 1982).

W. Ozgowicz, Proceedings of the 10th International Science Conference on AMME’01, Gliwice, 2001, p.411.

R. Luke, J. Bankmann, P.J. Wilbrandt, Scripta Mater. 39 (1998) 73–75.

D.B. Butrymowicz, T.J. Picconr, J.R. Manning, D.E. Newbury, Metalography 16 (1983) 349.

L.A. Dobrzański Podstawy Nauki o Materiałach i Metaloznawstwo, WNT Warszawa. 2002.

W. Brückner, V. Weihnacht, Journal of Applied Physics V85, N 7, 1 April 1999


  • На текущий момент ссылки отсутствуют.

Лицензия Creative Commons
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.