Submit an Article
Become a reviewer
Semyon F. Mulyavin
Semyon F. Mulyavin
professor, Ph.D., Dr.Sci., Professor
Tyumen Industrial University
Tyumen Russia
professor, Ph.D., Dr.Sci., Professor
Tyumen Industrial University
Tyumen
Russia
0
Total cited
0
Hirsch index

Co-authors

Articles

  • Date submitted
    2020-05-05
  • Date accepted
    2020-10-05
  • Date published
    2020-12-02

Assessment of the Influence of Water Saturation and Capillary Pressure Gradients on Size Formation of Two-Phase Filtration Zone in Compressed Low-Permeable Reservoir

The paper examines the influence of capillary pressure and water saturation ratio gradients on the size of the two-phase filtration zone during flooding of a low-permeable reservoir. Variations of water saturation ratio s in the zone of two-phase filtration are associated with the pressure variation of water injected into the reservoir; moreover the law of variation of water saturation ratio s ( r , t ) must correspond to the variation of injection pressure, i.e. it must be described by the same functions, as the functions of water pressure variation, but be subject to its own boundary conditions. The paper considers five options of s ( r , t ) dependency on time and coordinates. In order to estimate the influence of formation and fluid compressibility, the authors examine Rapoport – Lis model for incompressible media with a violated lower limit for Darcy’s law application and a time-dependent radius of oil displacement by water. When the lower limit for Darcy’s law application is violated, the radius of the displacement front depends on the value of capillary pressure gradient and the assignment of s function. It is shown that displacement front radii contain coefficients that carry information about physical properties of the reservoir and the displacement fluid. A comparison of two-phase filtration radii for incompressible and compressible reservoirs is performed. The influence of capillary pressure gradient and functional dependencies of water saturation ratio on oil displacement in low-permeable reservoirs is assessed. It is identified that capillary pressure gradient has practically no effect on the size of the two-phase filtration zone and the share of water in the arbitrary point of the formation, whereas the variation of water saturation ratio and reservoir compressibility exert a significant influence thereupon.

Read more
Valentin A. Korotenko, Sergei I. Grachev, Nelly P. kushakova, Semyon F. Mulyavin (2020) Assessment of the Influence of Water Saturation and Capillary Pressure Gradients on Size Formation of Two-Phase Filtration Zone in Compressed Low-Permeable Reservoir. Journal of Mining Institute. Vol 245. p. 569-581. DOI: 10.31897/PMI.2020.5.9